Extreme value theory for synchronization of coupled map lattices

被引:19
作者
Faranda, D. [1 ,2 ]
Ghoudi, H. [3 ,5 ]
Guiraud, P. [4 ]
Vaienti, S. [5 ]
机构
[1] Univ Paris Saclay, CNRS UMR CEA CNRS UVSQ 8212, CEA Saclay Orme Merisiers, LSCE IPSL, F-91191 Gif Sur Yvette, France
[2] London Math Lab, London, England
[3] Sfax Univ, Lab Dynam Syst & Combinator, Sfax, Tunisia
[4] Univ Valparaiso, Fac Ingn, CIMFAV, Valparaiso, Chile
[5] Univ Toulon & Var, Aix Marseille Univ, CNRS, CPT, Marseille, France
关键词
coupled lattice maps; extreme value theory; transfer operator; CONTINUOUS INVARIANT-MEASURES; DYNAMICAL-SYSTEMS; EXPANDING MAPS; RETURN TIMES;
D O I
10.1088/1361-6544/aabc8e
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the probability of the appearance of synchronization in chaotic coupled map lattices is related to the distribution of the maximum of a certain observable evaluated along almost all orbits. We show that such a distribution belongs to the family of extreme value laws, whose parameters, namely the extremal index, allow us to get a detailed description of the probability of synchronization. Theoretical results are supported by robust numerical computations that allow us to go beyond the theoretical framework provided and are potentially applicable to physically relevant systems.
引用
收藏
页码:3326 / 3358
页数:33
相关论文
共 28 条
[1]  
[Anonymous], 1993, Theory and applications of coupled map lattices. Nonlinear science: theory and applications
[2]  
Ashwin P, 2005, LECT NOTES PHYS, V671, P181
[3]  
Aytac H, 2015, T AM MATH SOC, V367, P8229
[4]   Extreme Value Laws for Dynamical Systems with Countable Extremal Sets [J].
Azevedo, Davide ;
Moreira Freitas, Ana Cristina ;
Freitas, Jorge Milhazes ;
Rodrigues, Fagner B. .
JOURNAL OF STATISTICAL PHYSICS, 2017, 167 (05) :1244-1261
[5]   Spacetime chaos in coupled map lattices [J].
Bunimovich, L. A. ;
Sinai, Ya G. .
NONLINEARITY, 1988, 1 (04) :491-516
[6]  
Chazottes J-R, 2005, SERIES LECT NOTES PH, V671, P265
[7]   Stable Chimeras and Independently Synchronizable Clusters [J].
Cho, Young Sul ;
Nishikawa, Takashi ;
Motter, Adilson E. .
PHYSICAL REVIEW LETTERS, 2017, 119 (08)
[8]   ASYMPTOTIC LIMIT LAW FOR THE CLOSE APPROACH OF 2 TRAJECTORIES IN EXPANDING MAPS OF THE CIRCLE [J].
COELHO, Z ;
COLLET, P .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 99 (02) :237-250
[9]  
CRUTCHFIELD J., 1987, Directions in Chaos
[10]   The limiting distribution and error terms for return times of dynamical systems [J].
Haydn, N ;
Vaienti, S .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2004, 10 (03) :589-616