Superconvergence and gradient recovery for a finite volume element method for solving convection-diffusion equations

被引:2
作者
Zhang, Tie [1 ]
Sheng, Ying
机构
[1] Northeastern Univ, Dept Math, Shenyang 110004, Peoples R China
关键词
convection-diffusion equation; superconvergence; bilinear finite volume element; gradient recovery; SCHEMES;
D O I
10.1002/num.21862
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the superconvergence of the finite volume element (FVE) method for solving convection-diffusion equations using bilinear trial functions. We first establish a superclose weak estimate for the bilinear form of FVE method. Based on this estimate, we obtain the H-1-superconvergence result: ||pi hu-uh||1=O(h2). Then, we present a gradient recovery formula and prove that the recovery gradient possesses the O(h2)-order superconvergence. Moreover, an asymptotically exact a posteriori error estimate is also given for the gradient error of FVE solution.Copyright (c) 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1152-1168, 2014
引用
收藏
页码:1152 / 1168
页数:17
相关论文
共 21 条
[1]   SOME ERROR-ESTIMATES FOR THE BOX METHOD [J].
BANK, RE ;
ROSE, DJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :777-787
[2]  
CAI ZQ, 1991, NUMER MATH, V58, P713
[3]   A NEW CLASS OF HIGH ORDER FINITE VOLUME METHODS FOR SECOND ORDER ELLIPTIC EQUATIONS [J].
Chen, Long .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) :4021-4043
[4]  
Chen Z., 1994, ACTA SCI NATUR U SUN, V33, P22
[5]  
CHEN Z, 1994, NUMER MATH J CHINESE, V3, P163
[6]   A note on the optimal L2-estimate of the finite volume element method [J].
Chen, ZY ;
Li, RH ;
Zhou, AH .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2002, 16 (04) :291-303
[7]  
Chou SH, 2000, MATH COMPUT, V69, P103, DOI 10.1090/S0025-5718-99-01192-8
[8]   Superconvergence of finite volume methods for the second order elliptic problem [J].
Chou, So-Hsiang ;
Ye, Xiu .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (37-40) :3706-3712
[9]   On the accuracy of the finite volume element method based on piecewise linear polynomials [J].
Ewing, RE ;
Lin, T ;
Lin, YP .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (06) :1865-1888
[10]   Finite volume methods for convection-diffusion problems [J].
Lazarov, RD ;
Mishev, ID ;
Vassilevski, PS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) :31-55