Logarithmic Sobolev inequalities on path spaces over Riemannian manifolds

被引:40
作者
Hsu, EP
机构
[1] Department of Mathematics, Northwestern University, Evanston
关键词
Manifold; Brownian Motion; Riemannian Manifold; Sobolev Inequality; Ricci Curvature;
D O I
10.1007/s002200050188
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let W-0(M) be the space of paths of unit time length on a connected, complete Riemannian manifold M such that gamma(0) = 0, a fixed point on M, and v the Wiener measure on W,(M) (the law of Brownian motion on M starting at 0). If the Ricci curvature is bounded by c, then the following logarithmic Sobolev inequality holds: integral(W0(M)) F-2 log \ F \ dv less than or equal to e(3c)parallel to DF parallel to(2) + parallel to F parallel to(2)log parallel to F parallel to.
引用
收藏
页码:9 / 16
页数:8
相关论文
共 10 条
[1]  
AIDA S, 1995, CR ACAD SCI I-MATH, V321, P97
[2]  
BISMUT JM, 1984, LARG DEVIATIONS MALL
[3]  
DONNELLY H, 1982, MICH MATH J, V29, P149
[4]  
Fabes E., 1993, LECT NOTES MATH, V1563, P54
[5]  
FANG SZ, 1994, CR ACAD SCI I-MATH, V318, P257
[6]   LOGARITHMIC SOBOLEV INEQUALITIES ON LIE-GROUPS [J].
GROSS, L .
ILLINOIS JOURNAL OF MATHEMATICS, 1992, 36 (03) :447-490
[7]   LOGARITHMIC SOBOLEV INEQUALITIES [J].
GROSS, L .
AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (04) :1061-1083
[8]  
HSU EP, 1995, CR ACAD SCI I-MATH, V320, P1009
[9]   THE EQUIVALENCE OF THE LOGARITHMIC SOBOLEV INEQUALITY AND THE DOBRUSHIN-SHLOSMAN MIXING CONDITION [J].
STROOCK, DW ;
ZEGARLINSKI, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (02) :303-323
[10]   THE LOGARITHMIC SOBOLEV INEQUALITY FOR DISCRETE SPIN SYSTEMS ON A LATTICE [J].
STROOCK, DW ;
ZEGARLINSKI, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (01) :175-193