AcroFOD: An Adaptive Method for Cross-Domain Few-Shot Object Detection

被引:23
作者
Gao, Yipeng [1 ,3 ]
Yang, Lingxiao [1 ]
Huang, Yunmu [2 ]
Xie, Song [2 ]
Li, Shiyong [2 ]
Zheng, Wei-Shi [1 ,3 ,4 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R China
[2] Huawei Technol Co Ltd, Shenzhen, Peoples R China
[3] Minist Educ, Key Lab Machine Intelligence & Adv Comp, Guangzhou, Peoples R China
[4] Sun Yat Sen Univ, Guangdong Prov Key Lab Informat Secur Technol, Guangzhou, Peoples R China
来源
COMPUTER VISION - ECCV 2022, PT XXXIII | 2022年 / 13693卷
关键词
Domain adaptation; Few-shot learning; Object detection;
D O I
10.1007/978-3-031-19827-4_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Under the domain shift, cross-domain few-shot object detection aims to adapt object detectors in the target domain with a few annotated target data. There exists two significant challenges: (1) Highly insufficient target domain data; (2) Potential over-adaptation and misleading caused by inappropriately amplified target samples without any restriction. To address these challenges, we propose an adaptive method consisting of two parts. First, we propose an adaptive optimization strategy to select augmented data similar to target samples rather than blindly increasing the amount. Specifically, we filter the augmented candidates which significantly deviate from the target feature distribution in the very beginning. Second, to further relieve the data limitation, we propose the multi-level domain-aware data augmentation to increase the diversity and rationality of augmented data, which exploits the crossimage foreground-background mixture. Experiments show that the proposed method achieves state-of-the-art performance on multiple benchmarks. The code is available at https://github.com/Hlings/AcroFOD.
引用
收藏
页码:673 / 690
页数:18
相关论文
共 52 条
[11]   AutoAugment: Learning Augmentation Strategies from Data [J].
Cubuk, Ekin D. ;
Zoph, Barret ;
Mane, Dandelion ;
Vasudevan, Vijay ;
Le, Quoc V. .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :113-123
[12]   Modeling Visual Context Is Key to Augmenting Object Detection Datasets [J].
Dvornik, Nikita ;
Mairal, Julien ;
Schmid, Cordelia .
COMPUTER VISION - ECCV 2018, PT XII, 2018, 11216 :375-391
[13]   Cut, Paste and Learn: Surprisingly Easy Synthesis for Instance Detection [J].
Dwibedi, Debidatta ;
Misra, Ishan ;
Hebert, Martial .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :1310-1319
[14]   Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector [J].
Fan, Qi ;
Zhuo, Wei ;
Tang, Chi-Keung ;
Tai, Yu-Wing .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :4012-4021
[15]   InstaBoost: Boosting Instance Segmentation via Probability Map Guided Copy-Pasting [J].
Fang, Hao-Shu ;
Sun, Jianhua ;
Wang, Runzhong ;
Gou, Minghao ;
Li, Yong-Lu ;
Lu, Cewu .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :682-691
[16]  
Ganin Y, 2015, PR MACH LEARN RES, V37, P1180
[17]  
Geiger A, 2012, PROC CVPR IEEE, P3354, DOI 10.1109/CVPR.2012.6248074
[18]   Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation [J].
Ghiasi, Golnaz ;
Cui, Yin ;
Srinivas, Aravind ;
Qian, Rui ;
Lin, Tsung-Yi ;
Cubuk, Ekin D. ;
Le, Quoc, V ;
Zoph, Barret .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :2917-2927
[19]  
Gopalan R, 2011, IEEE I CONF COMP VIS, P999, DOI 10.1109/ICCV.2011.6126344
[20]  
Gretton A, 2012, J MACH LEARN RES, V13, P723