AcroFOD: An Adaptive Method for Cross-Domain Few-Shot Object Detection

被引:23
作者
Gao, Yipeng [1 ,3 ]
Yang, Lingxiao [1 ]
Huang, Yunmu [2 ]
Xie, Song [2 ]
Li, Shiyong [2 ]
Zheng, Wei-Shi [1 ,3 ,4 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou, Peoples R China
[2] Huawei Technol Co Ltd, Shenzhen, Peoples R China
[3] Minist Educ, Key Lab Machine Intelligence & Adv Comp, Guangzhou, Peoples R China
[4] Sun Yat Sen Univ, Guangdong Prov Key Lab Informat Secur Technol, Guangzhou, Peoples R China
来源
COMPUTER VISION - ECCV 2022, PT XXXIII | 2022年 / 13693卷
关键词
Domain adaptation; Few-shot learning; Object detection;
D O I
10.1007/978-3-031-19827-4_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Under the domain shift, cross-domain few-shot object detection aims to adapt object detectors in the target domain with a few annotated target data. There exists two significant challenges: (1) Highly insufficient target domain data; (2) Potential over-adaptation and misleading caused by inappropriately amplified target samples without any restriction. To address these challenges, we propose an adaptive method consisting of two parts. First, we propose an adaptive optimization strategy to select augmented data similar to target samples rather than blindly increasing the amount. Specifically, we filter the augmented candidates which significantly deviate from the target feature distribution in the very beginning. Second, to further relieve the data limitation, we propose the multi-level domain-aware data augmentation to increase the diversity and rationality of augmented data, which exploits the crossimage foreground-background mixture. Experiments show that the proposed method achieves state-of-the-art performance on multiple benchmarks. The code is available at https://github.com/Hlings/AcroFOD.
引用
收藏
页码:673 / 690
页数:18
相关论文
共 52 条
[1]   Learning Pedestrian Detection from Virtual Worlds [J].
Amato, Giuseppe ;
Ciampi, Luca ;
Falchi, Fabrizio ;
Gennaro, Claudio ;
Messina, Nicola .
IMAGE ANALYSIS AND PROCESSING - ICIAP 2019, PT I, 2019, 11751 :302-312
[2]  
Bochkovskiy A, 2020, Arxiv, DOI arXiv:2004.10934
[3]   Harmonizing Transferability and Discriminability for Adapting Object Detectors [J].
Chen, Chaoqi ;
Zheng, Zebiao ;
Ding, Xinghao ;
Huang, Yue ;
Dou, Qi .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :8866-8875
[4]   Progressive Feature Alignment for Unsupervised Domain Adaptation [J].
Chen, Chaoqi ;
Xie, Weiping ;
Huang, Wenbing ;
Rong, Yu ;
Ding, Xinghao ;
Huang, Yue ;
Xu, Tingyang ;
Huang, Junzhou .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :627-636
[5]  
Chen H, 2018, AAAI CONF ARTIF INTE, P2836
[6]  
Chen Tung-I., 2021, arXiv
[7]  
Chen W.-Y., 2018, INT C LEARNING REPRE
[8]   Domain Adaptive Faster R-CNN for Object Detection in the Wild [J].
Chen, Yuhua ;
Li, Wen ;
Sakaridis, Christos ;
Dai, Dengxin ;
Van Gool, Luc .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :3339-3348
[9]   Scale-aware Automatic Augmentation for Object Detection [J].
Chen, Yukang ;
Li, Yanwei ;
Kong, Tao ;
Qi, Lu ;
Chu, Ruihang ;
Li, Lei ;
Jia, Jiaya .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :9558-9567
[10]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223