Graphene Covered on Microfiber Exhibiting Polarization and Polarization-dependent Saturable Absorption

被引:34
作者
He, Xiaoying [1 ,2 ]
Zhang, Xiangchao [1 ,2 ]
Zhang, Hao [1 ,2 ]
Xu, Min [1 ,2 ]
机构
[1] Fudan Univ, Shanghai Ultra Precis Opt Mfg Engn Ctr, Shanghai 200433, Peoples R China
[2] Fudan Univ, Dept Opt Sci & Engn, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Graphene; microfiber; optical saturable absorber; optical polarization; SUBWAVELENGTH-DIAMETER SILICA; NANOWIRES; OXIDE;
D O I
10.1109/JSTQE.2013.2270278
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Graphene has attracted a lot of research interest, especially as a saturable absorber (SA). However, improvement on thermal damage threshold is critical for the SA. Here, graphene covered on the microfiber is developed for this purpose by use of the light-graphene interaction via the evanescent field of the guided mode in the microfiber. Such interaction is numerically studied by using the theory of the electromagnetic field. Theoretical and experimental results indicate that graphene covered on the upper surface of the microfiber can be used as a polarization-dependent SA as well as an optical polarizer. When the radius size of the microfiber is down to 0.8 mu m, its polarization extinction ratio is up to similar to 27 dB. When the radius of microfiber is up to similar to 3 mu m, a polarization-dependent SA can be obtained with high thermal damage threshold of similar to 975.82 MWcm(-2) for p-polarization and similar to 1233.2 MWcm(-2) for s-polarization, and its polarization-dependent modulation depth varies from similar to 10.25% to similar to 12.85%.
引用
收藏
页数:7
相关论文
共 25 条
[1]  
Bao Q. L., 2009, ADV FUNCT MATER, V19, P1
[2]  
Bao QL, 2011, NAT PHOTONICS, V5, P411, DOI [10.1038/nphoton.2011.102, 10.1038/NPHOTON.2011.102]
[3]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[4]   Optical fiber nanowires and microwires: fabrication and applications [J].
Brambilla, Gilberto ;
Xu, Fei ;
Horak, Peter ;
Jung, Yongmin ;
Koizumi, Fumihito ;
Sessions, Neil P. ;
Koukharenko, Elena ;
Feng, Xian ;
Murugan, Ganapathy S. ;
Wilkinson, James S. ;
Richardson, David J. .
ADVANCES IN OPTICS AND PHOTONICS, 2009, 1 (01) :107-161
[5]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[6]   RANDOM-WALK OF COHERENTLY AMPLIFIED SOLITONS IN OPTICAL FIBER TRANSMISSION [J].
GORDON, JP ;
HAUS, HA .
OPTICS LETTERS, 1986, 11 (10) :665-667
[7]   Energy band-gap engineering of graphene nanoribbons [J].
Han, Melinda Y. ;
Oezyilmaz, Barbaros ;
Zhang, Yuanbo ;
Kim, Philip .
PHYSICAL REVIEW LETTERS, 2007, 98 (20)
[8]   Nanotube-Polymer Composites for Ultrafast Photonics [J].
Hasan, Tawfique ;
Sun, Zhipei ;
Wang, Fengqiu ;
Bonaccorso, Francesco ;
Tan, Ping Heng ;
Rozhin, Aleksey G. ;
Ferrari, Andrea C. .
ADVANCED MATERIALS, 2009, 21 (38-39) :3874-3899
[9]   Wavelength-tunable, passively mode-locked fiber laser based on graphene and chirped fiber Bragg grating [J].
He, Xiaoying ;
Liu, Zhi-bo ;
Wang, D. N. .
OPTICS LETTERS, 2012, 37 (12) :2394-2396
[10]   Passively Mode-Locked Fiber Laser Based on Reduced Graphene Oxide on Microfiber for Ultra-Wide-Band Doublet Pulse Generation [J].
He, Xiaoying ;
Liu, Zhi-Bo ;
Wang, Dongning ;
Yang, Minwei ;
Liao, C. R. ;
Zhao, Xin .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2012, 30 (07) :984-989