Front propagation and segregation in a reaction-diffusion model with cross-diffusion

被引:44
作者
del-Castillo-Negrete, D [1 ]
Carreras, BA [1 ]
Lynch, V [1 ]
机构
[1] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
关键词
reaction-diffusion; fronts; segregation; turbulent diffusion;
D O I
10.1016/S0167-2789(02)00494-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A study of front propagation and segregation in a system of reaction-diffusion equations with cross-diffusion is presented. The reaction models predator-prey dynamics involving two fields. The diffusive part is nonlinear in the sense that the diffusion coefficient, instead of being a constant as in the well-studied case, depends on one of the fields. A key element of the model is a cross-diffusion term according to which the flux of one of the fields is driven by gradients of the other field. The original motivation of the model was the study of the turbulence-shear flow interaction in plasmas. The model also bears some similarities with models used in the study of spatial segregation of interacting biological species. The system has three nontrivial fixed points, and a study of traveling fronts solutions joining these states is presented. Depending on the stability properties of the fixed points, the fronts are uniform or have spatial structure. In the latter case, a cross-diffusion-driven pattern-forming (k not equivalent to 0) instability leads to segregation in the wake of the front. The segregated state consists of layered structures. A Ginzburg-Landau amplitude equation is used to describe the dynamics near marginal stability. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:45 / 60
页数:16
相关论文
共 15 条
[1]  
[Anonymous], 1964, Handbook of mathematical functions
[2]   Quiescent double barrier high-confinement mode plasmas in the DIII-D tokamak [J].
Burrell, KH ;
Austin, ME ;
Brennan, DP ;
DeBoo, JC ;
Doyle, EJ ;
Fenzi, C ;
Fuchs, C ;
Gohil, P ;
Greenfield, CM ;
Groebner, RJ ;
Lao, LL ;
Luce, TC ;
Makowski, MA ;
McKee, GR ;
Moyer, RA ;
Petty, CC ;
Porkolab, M ;
Rettig, CL ;
Rhodes, TL ;
Rost, JC ;
Stallard, BW ;
Strait, EJ ;
Synakowski, EJ ;
Wade, MR ;
Watkins, JG ;
West, WP .
PHYSICS OF PLASMAS, 2001, 8 (05) :2153-2162
[3]   Electron thermal transport in RTP: filaments, barriers and bifurcations [J].
Cardozo, NJL ;
Hogeweij, GMD ;
de Baar, M ;
Barth, CJ ;
Beurskens, MNA ;
De Luca, F ;
Donne, AJH ;
Galli, P ;
van Gelder, JFM ;
Gorini, G ;
de Groot, B ;
Jacchia, A ;
Karelse, FA ;
de Kloe, J ;
Kruijt, OG ;
Lok, J ;
Mantica, P ;
van der Meiden, HJ ;
Oomens, AAM ;
Oyevaar, T ;
Pijper, FJ ;
Polman, RW ;
Salzedas, F ;
Schuller, FC ;
Westerhof, E .
PLASMA PHYSICS AND CONTROLLED FUSION, 1997, 39 :B303-B316
[4]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[5]   Stratified shear flows in a model of turbulence-shear flow interaction [J].
del-Castillo-Negrete, D ;
Carreras, BA .
PHYSICS OF PLASMAS, 2002, 9 (01) :118-127
[6]   DYNAMICS OF SPATIOTEMPORALLY PROPAGATING TRANSPORT BARRIERS [J].
DIAMOND, PH ;
LEBEDEV, VB ;
NEWMAN, DE ;
CARRERAS, BA .
PHYSICS OF PLASMAS, 1995, 2 (10) :3685-3695
[7]   INTERNAL TRANSPORT BARRIER ON Q=3 SURFACE AND POLOIDAL PLASMA SPIN-UP IN JT-60U HIGH-BETA(P) DISCHARGES [J].
KOIDE, Y ;
KIKUCHI, M ;
MORI, M ;
TSUJI, S ;
ISHIDA, S ;
ASAKURA, N ;
KAMADA, Y ;
NISHITANI, T ;
KAWANO, Y ;
HATAE, T ;
FUJITA, T ;
FUKUDA, T ;
SAKASAI, A ;
KONDOH, T ;
YOSHINO, R ;
NEYATANI, Y .
PHYSICAL REVIEW LETTERS, 1994, 72 (23) :3662-3665
[8]   Diffusion, self-diffusion and cross-diffusion [J].
Lou, Y ;
Ni, WM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 131 (01) :79-131
[9]  
MCCOMB WD, 1991, PHYSICS FLUID TURBUL
[10]   SPATIAL SEGREGATION IN COMPETITIVE INTERACTION-DIFFUSION EQUATIONS [J].
MIMURA, M ;
KAWASAKI, K .
JOURNAL OF MATHEMATICAL BIOLOGY, 1980, 9 (01) :49-64