On the number of solutions of some Kummer equations over finite fields

被引:0
|
作者
Nicolae, Florin [1 ,2 ]
机构
[1] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
[2] Romanian Acad, Inst Math, RO-014700 Bucharest, Romania
关键词
Finite field; Kummer equation; Jacobi sum;
D O I
10.1016/j.ffa.2014.04.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let l be a prime number and let k = F-q be a finite field of characteristic p not equal l with q = p(f) elements. Let n >= 0. We determine the number N of solutions (x, y) in k of the Kummer equation y(l)= x(x(ln)-1), in terms of the trace of a certain Jacobi sum. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:151 / 159
页数:9
相关论文
共 50 条
  • [21] Some primitive polynomials over finite fields
    Chang, SW
    Lee, JB
    ACTA MATHEMATICA SCIENTIA, 2001, 21 (03) : 412 - 416
  • [22] Some permutation polynomials over finite fields
    José E. Marcos
    Applicable Algebra in Engineering, Communication and Computing, 2015, 26 : 465 - 474
  • [23] Chebyshev Polynomials and Pell Equations over Finite Fields
    Boaz Cohen
    Czechoslovak Mathematical Journal, 2021, 71 : 491 - 510
  • [24] CHEBYSHEV POLYNOMIALS AND PELL EQUATIONS OVER FINITE FIELDS
    Cohen, Boaz
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (02) : 491 - 510
  • [25] The number of rational points of certain quartic diagonal hypersurfaces over finite fields
    Zhao, Junyong
    Hong, Shaofang
    Zhu, Chaoxi
    AIMS MATHEMATICS, 2020, 5 (03): : 2710 - 2731
  • [26] Number of equivalence classes of rational functions over finite fields
    Hou, XIANG-DoNG
    ACTA ARITHMETICA, 2025, 218 (02) : 97 - 136
  • [27] On the number of distinct roots of a lacunary polynomial over finite fields
    Solymosi, Jozsef
    White, Ethan P.
    Yip, Chi Hoi
    FINITE FIELDS AND THEIR APPLICATIONS, 2021, 72
  • [28] The number of rational points of a family of hypersurfaces over finite fields
    Hu, Shuangnian
    Hong, Shaofang
    Zhao, Wei
    JOURNAL OF NUMBER THEORY, 2015, 156 : 135 - 153
  • [29] On the number of zeros of diagonal cubic forms over finite fields
    Hong, Shaofang
    Zhu, Chaoxi
    FORUM MATHEMATICUM, 2021, 33 (03) : 697 - 708
  • [30] A NOTE ON SOME CHARACTER SUMS OVER FINITE FIELDS
    Fi, Xiwang Cao
    Xu, Guangkui
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 92 (01) : 32 - 43