On the number of solutions of some Kummer equations over finite fields

被引:0
作者
Nicolae, Florin [1 ,2 ]
机构
[1] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
[2] Romanian Acad, Inst Math, RO-014700 Bucharest, Romania
关键词
Finite field; Kummer equation; Jacobi sum;
D O I
10.1016/j.ffa.2014.04.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let l be a prime number and let k = F-q be a finite field of characteristic p not equal l with q = p(f) elements. Let n >= 0. We determine the number N of solutions (x, y) in k of the Kummer equation y(l)= x(x(ln)-1), in terms of the trace of a certain Jacobi sum. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:151 / 159
页数:9
相关论文
共 5 条
[1]  
Davenport H, 1935, J REINE ANGEW MATH, V172, P151
[2]  
HASSE H, 1954, ABHANDLUNGEN DTSC MK, P5
[3]  
Holzapfel RP, 2002, FINITE FIELDS WITH APPLICATIONS TO CODING THEORY, CRYPTOGRAPHY AND RELATED AREAS, P187
[4]  
Lidl R., 1996, ENCY MATH ITS APPL, V20
[5]   Quotients of Fermat curves and a Hecke character [J].
van Geemen, B ;
Koike, K ;
Weng, A .
FINITE FIELDS AND THEIR APPLICATIONS, 2005, 11 (01) :6-29