Classification of Polarimetric Synthetic Aperture Radar Images from SIR-C and ALOS PALSAR

被引:4
作者
Turkar, Varsha [1 ]
Rao, Y. S. [1 ]
机构
[1] Indian Inst Technol, Ctr Studies Resources Engn, Bombay 400076, Maharashtra, India
来源
INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN MICROWAVE THEORY AND APPLICATIONS, PROCEEDINGS | 2008年
关键词
Radar polarimetry; synthetic aperture radar; speckle; target decomposition; terrain classification;
D O I
10.1109/AMTA.2008.4763087
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
SIR-C quad-pol MLC data and ALOS PALSAR quad-pol and dual pol SLC data over Indian sites have been processed using PoISARpro software for classification of various land features. The land features include ocean, clear water, settlements, agriculture fields, arid lands, grown and young forest, hilly terrain, mangrove forest, etc. The test sites used are SIR-C L-band and C-band Kolkata city and its surroundings, ALOS PALSAR data over West Bengal, Haryana, Rajasthan, Uttar Pradesh, and Mumbai. For Kolkata city we observed that classification results for L- and C-bands are slightly different. For Mumbai dual pol data classification accuracy is poor due to overlap of backscattering values for bare ground and mangrove vegetation with ocean backscattering values.
引用
收藏
页码:438 / 440
页数:3
相关论文
共 50 条
  • [41] Improved discrimination of geological units via geomorphological classification of synthetic aperture radar images
    Ghafouri, Ali
    Amini, Jalal
    Dehmollaian, Mojtaba
    Kavoosi, Mohammad Ali
    JOURNAL OF APPLIED REMOTE SENSING, 2018, 12 (02):
  • [42] Target Classification in Synthetic Aperture Radar Images Using Quantized Wavelet Scattering Networks
    Raj, Raghu G.
    Fox, Maxine R.
    Narayanan, Ram M.
    SENSORS, 2021, 21 (15)
  • [43] Deep learning-based explainable target classification for synthetic aperture radar images
    Mandeep
    Pannu, Husanbir Singh
    Malhi, Avleen
    2020 13TH INTERNATIONAL CONFERENCE ON HUMAN SYSTEM INTERACTION (HSI), 2020, : 34 - 39
  • [44] On the compression of raw data and images from synthetic aperture radar (SAR).
    de Beaucoudrey, N
    Mercier, G
    ANNALS OF TELECOMMUNICATIONS, 2001, 56 (11-12) : 646 - 654
  • [45] Improved four-component based polarimetric synthetic aperture radar image decomposition
    Maurya, Himanshu
    Kumar, Amit
    Mishra, Amit Kumar
    Panigrahi, Rajib Kumar
    IET RADAR SONAR AND NAVIGATION, 2020, 14 (04) : 619 - 627
  • [46] Change Detection in Synthetic Aperture Radar Images Using a Dual-Domain Network
    Qu, Xiaofan
    Gao, Feng
    Dong, Junyu
    Du, Qian
    Li, Heng-Chao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [47] Degree of Polarization-Based Data Filter for Fully Polarimetric Synthetic Aperture Radar
    Shang, Fang
    Kishi, Naoto
    Hirose, Akira
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (06): : 3767 - 3777
  • [48] The legacy of the SIR-C/X-SAR radar system: 25 years on
    Freeman, Anthony
    Zink, Manfred
    Caro, Ed
    Moreira, Alberto
    Veilleux, Louise
    Werner, Marian
    REMOTE SENSING OF ENVIRONMENT, 2019, 231
  • [49] Estimation of the Equivalent Number of Looks in Polarimetric Synthetic Aperture Radar Imagery
    Anfinsen, Stian Normann
    Doulgeris, Anthony P.
    Eltoft, Torbjorn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (11): : 3795 - 3809
  • [50] Parallel Implementation of Polarimetric Synthetic Aperture Radar Data Processing for Unsupervised Classification Using the Complex Wishart Classifier
    Sanchez, Sergio
    Marpu, Prashanth R.
    Plaza, Antonio
    Paz-Gallardo, Abel
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (11) : 5376 - 5387