Magnetic phases and transitions of the two-species Bose-Hubbard model

被引:19
|
作者
Powell, Stephen [1 ]
机构
[1] Univ Oxford, Oxford OX1 3NP, England
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 05期
基金
英国工程与自然科学研究理事会;
关键词
boson systems; critical points; Hubbard model; Landau levels; localised states; magnetic hysteresis; magnetic transitions; superfluidity; thermodynamics; OPTICAL LATTICE; SUPERFLUID; INSULATOR; ATOMS;
D O I
10.1103/PhysRevA.79.053614
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A model of two-species bosons moving on the sites of a lattice is studied at nonzero temperature, focusing on magnetic order and superfluid-insulator transitions. First, Landau theory is used to find the general structure of the phase diagram and in particular to demonstrate the presence of first-order transitions and hysteresis in the vicinity of a multicritical point. Second, an explicit thermodynamic phase diagram is calculated using an approach based on a field-theoretical description of the Bose-Hubbard model, which incorporates the crucial effects of particle-number fluctuations. The maximum transition temperature to a magnetically ordered Mott insulator is found to be limited by the presence of the superfluid phase.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Exact numerical solutions of Bose-Hubbard model
    Zhang, D
    Pan, F
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 41 (02) : 183 - 188
  • [42] Using entanglement to discern phases in the disordered one-dimensional Bose-Hubbard model
    Goldsborough, Andrew M.
    Roemer, Rudolf A.
    EPL, 2015, 111 (02)
  • [43] Projection operator approach to the Bose-Hubbard model
    Dutta, Anirban
    Trefzger, C.
    Sengupta, K.
    PHYSICAL REVIEW B, 2012, 86 (08)
  • [44] Gutzwiller approach to the Bose-Hubbard model with random local impurities
    Buonsante, Pierfrancesco
    Massel, Francesco
    Penna, Vittorio
    Vezzani, Alessandro
    PHYSICAL REVIEW A, 2009, 79 (01):
  • [45] Process-chain approach to the Bose-Hubbard model: Ground-state properties and phase diagram
    Teichmann, Niklas
    Hinrichs, Dennis
    Holthaus, Martin
    Eckardt, Andre
    PHYSICAL REVIEW B, 2009, 79 (22):
  • [46] Scaling property of the critical hopping parameters for the Bose-Hubbard model
    Teichmann, N.
    Hinrichs, D.
    EUROPEAN PHYSICAL JOURNAL B, 2009, 71 (02) : 219 - 223
  • [47] Bose-Hubbard model on polyhedral graphs
    Prestipino, Santi
    PHYSICAL REVIEW A, 2021, 103 (03)
  • [48] Bose-Einstein condensation and/or modulation of "displacements" in the two-state Bose-Hubbard model
    Stasyuk, I., V
    Velychko, O. V.
    CONDENSED MATTER PHYSICS, 2018, 21 (02) : 1 - 17
  • [49] Disordered spinor Bose-Hubbard model
    Lacki, Mateusz
    Paganelli, Simone
    Ahufinger, Veronica
    Sanpera, Anna
    Zakrzewski, Jakub
    PHYSICAL REVIEW A, 2011, 83 (01):
  • [50] Asymptotic localization in the Bose-Hubbard model
    Bols, Alex
    De Roeck, Wojciech
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (02)