A Novel Machine Learning-assisted Pairs Trading Approach for Trading Risk Reduction

被引:0
作者
Chen, Zichao [1 ,2 ]
Wang, Cara [1 ,2 ]
Sun, Peng [1 ]
机构
[1] Duke Kunshan Univ, Suzhou, Peoples R China
[2] Duke Univ, Durham, NC 27708 USA
来源
2022 IEEE 1ST GLOBAL EMERGING TECHNOLOGY BLOCKCHAIN FORUM: BLOCKCHAIN & BEYOND, IGETBLOCKCHAIN | 2022年
关键词
Artificial Intelligence; Pairs trading; risk management; cryptocurrency; stock market;
D O I
10.1109/iGETblockchain56591.2022.10087166
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The cryptocurrency market has been growing rapidly in recent years. The volume of transactions and the number of participants in the cryptocurrency market makes it huge enough that we cannot ignore it. At the same time, the global stock market has also reached a new height in the past two years. However, due to the COVID epidemic and other political and economic-related factors in the last two years, the uncertainty in the capital market remains high, and shortterm large fluctuations occur frequently; thus, many investors have suffered substantial losses. Pairs trading, an advanced statistical arbitrage method, is believed to hedge the risk and profit off the market regardless of market condition. Amongst the vast literature on pairs trading, there have been investors trading a pair of cryptocurrencies or a pair of stocks using machine learning or empirical methods. This research probes the boundary of utilizing machine learning methods to do pairs trading with one stock asset and another cryptocurrency. Briefly, we built an assets pool with both stocks and cryptocurrencies to find the best trading pair. In addition, we applied mainstream machine learning models to the trading strategy. We finally evaluated the accuracy of the proposed method in prediction and compared their returns based on the actual U.S. Stock and Cryptocurrency Market data. The test results show that our method outperforms other state-of-the-art methods.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Deep Reinforcement Learning Approach for Trading Automation in the Stock Market
    Kabbani, Taylan
    Duman, Ekrem
    IEEE ACCESS, 2022, 10 : 93564 - 93574
  • [42] Nonlinear relationships in soybean commodities Pairs trading-test by deep reinforcement learning
    Liu, Jianhe
    Lu, Luze
    Zong, Xiangyu
    Xie, Baao
    FINANCE RESEARCH LETTERS, 2023, 58
  • [43] Deep reinforcement learning for pairs trading: Evidence from China black series futures
    Guo, Minjia
    Liu, Jianhe
    Luo, Ziping
    Han, Xiao
    INTERNATIONAL REVIEW OF ECONOMICS & FINANCE, 2024, 93 : 981 - 993
  • [44] Study on Erythrocyte Antioxidantion Based on Machine Learning-assisted Image Recognition
    Xiao-Long, Xu
    Cheng-Lin, Zhang
    Qi-Ping, Weng
    Shui-Lian, Deng
    Yu-Zhen, Xiong
    Yan-Wen, Li
    Chun-Bo, Qin
    Jun-Ying, Zeng
    Chang-Yu, Liu
    Jian-Bo, Jia
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2024, 52 (03) : 429 - 438
  • [45] Price spread prediction in high-frequency pairs trading using deep learning architectures
    Liou, Jyh-Hwa
    Liu, Yun-Ti
    Cheng, Li-Chen
    INTERNATIONAL REVIEW OF FINANCIAL ANALYSIS, 2024, 96
  • [46] Joint price and volumetric risk in wind power trading: A copula approach
    Pircalabu, A.
    Hvolby, T.
    Jung, J.
    Hog, E.
    ENERGY ECONOMICS, 2017, 62 : 139 - 154
  • [47] Editorial: Machine learning-assisted diagnosis and treatment of endocrine-related diseases
    Zhang, Heng
    Kahlert, Ulf D.
    Shi, Wenjie
    FRONTIERS IN ENDOCRINOLOGY, 2023, 14
  • [48] Machine learning-assisted rheumatoid arthritis formulations: A review on smart pharmaceutical design
    Pouyanfar, Niki
    Anvari, Zahra
    Davarikia, Kamyar
    Aftabi, Parnia
    Tajik, Negin
    Shoara, Yasaman
    Ahmadi, Mahnaz
    Ayyoubzadeh, Seyed Mohammad
    Shahbazi, Mohammad-Ali
    Ghorbani-Bidkorpeh, Fatemeh
    MATERIALS TODAY COMMUNICATIONS, 2024, 41
  • [49] The efficiency of machine learning-assisted platform for article screening in systematic reviews in orthopaedics
    Sathish Muthu
    International Orthopaedics, 2023, 47 : 551 - 556