High performance stretchable Li-ion microbattery

被引:44
作者
Nasreldin, Mohamed [1 ]
Delattre, Roger [1 ]
Calmes, Cyril [1 ]
Ramuz, Marc [1 ]
Sugiawati, Vinsensia Ade [1 ]
Maria, Sebastien [2 ,3 ]
de la Tocnaye, Jean-Louis de Bougrenet [4 ,5 ]
Djenizian, Thierry [1 ,6 ]
机构
[1] Mines St Etienne, Ctr Microelect Prov, Dept Flexible Elect, F-13541 Gardanne, France
[2] Aix Marseille Univ, CNRS, UMR 7273, Inst Chim Radicalaire, F-43397 Marseille, France
[3] CNRS, FR 3459, Reseau Stockage Electrochem Energie RS2E, 33 Rue St Leu, F-80039 Amiens, France
[4] IMT Atlantique, Opt Dept, CS 83818, F-29238 Brest 3, France
[5] IMT Atlantique, Elect Dept, CS 83818, F-29238 Brest 3, France
[6] Al Farabi Kazakh Natl Univ, Ctr Phys Chem Methods Res & Anal, Tole Bi Str 96A, Alma Ata, Kazakhstan
关键词
Stretchable microbatteries; Serpentine current collectors; Microstructured electrodes; Li-ion technology; Wearable microelectronics; ENERGY-STORAGE; LINI0.5MN1.5O4; CATHODE; LITHIUM; SUPERCAPACITORS; ELECTRODES; BATTERIES; THIN;
D O I
10.1016/j.ensm.2020.07.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The recent advances in wearable technologies had caused a surge in the demand for stretchable Li-ion micro-batteries. Herein, a special design based on micropillar electrodes supported on metallic serpentines has been investigated to achieve the fabrication of a functionning device. Besides achieving high areal capacity values like 2.5 mA h cm(-2) at C/10 (i.e. 0.07 mA cm(-2)), the micropillars make the system reversibly stretchable. Electro-chemical tests revealed excellent performance when the stretchable micropower source was subjected to different mechanical strains. Indeed, 73% of the capacity is retained over 100 cycles under 30% strain and all fatigue tests showed that capacity retention remain higher than 70%.
引用
收藏
页码:108 / 115
页数:8
相关论文
共 42 条
[1]   Sn- and SnO2-graphene flexible foams suitable as binder-free anodes for lithium ion batteries [J].
Botas, Cristina ;
Carriazo, Daniel ;
Singh, Gurpreet ;
Rojo, Teofilo .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (25) :13402-13410
[2]   Insights about the irreversible capacity of LiNi0.5Mn1.5O4 cathode materials in lithium batteries [J].
Brutti, Sergio ;
Greco, Giorgia ;
Reale, Priscilla ;
Panero, Stefania .
ELECTROCHIMICA ACTA, 2013, 106 :483-493
[3]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
[4]   Folding Paper-Based Lithium-Ion Batteries for Higher Areal Energy Densities [J].
Cheng, Qian ;
Song, Zeming ;
Ma, Teng ;
Smith, Bethany B. ;
Tang, Rui ;
Yu, Hongyu ;
Jiang, Hanqing ;
Chan, Candace K. .
NANO LETTERS, 2013, 13 (10) :4969-4974
[5]   Solid-to-liquid transition of polycarbonate solid electrolytes in Li-metal batteries [J].
Commarieu, Basile ;
Paolella, Andrea ;
Collin-Martin, Steve ;
Gagnon, Catherine ;
Vijh, Ashok ;
Guerfi, Abdelbast ;
Zaghib, Karim .
JOURNAL OF POWER SOURCES, 2019, 436
[6]   Toward high lithium conduction in solid polymer and polymer-ceramic batteries [J].
Commarieu, Basile ;
Paolella, Andrea ;
Daigle, Jean-Christophe ;
Zaghib, Karim .
CURRENT OPINION IN ELECTROCHEMISTRY, 2018, 9 :56-63
[7]   Three-Dimensional Self-Supported Metal Oxides for Advanced Energy Storage [J].
Ellis, Brian L. ;
Knauth, Philippe ;
Djenizian, Thierry .
ADVANCED MATERIALS, 2014, 26 (21) :3368-3397
[8]   Highly Stretchable Alkaline Batteries Based on an Embedded Conductive Fabric [J].
Gaikwad, Abhinav M. ;
Zamarayeva, Alla M. ;
Rousseau, Jamesley ;
Chu, Howie ;
Derin, Irving ;
Steingart, Daniel A. .
ADVANCED MATERIALS, 2012, 24 (37) :5071-5076
[9]  
Gulzar U., 2016, World J. Text. Eng. Technol, V2, P6
[10]   Next-generation textiles: from embedded supercapacitors to lithium ion batteries [J].
Gulzar, Umair ;
Goriparti, Subrahmanyam ;
Miele, Ermanno ;
Li, Tao ;
Maidecchi, Giulia ;
Toma, Andrea ;
De Angelis, Francesco ;
Capiglia, Claudio ;
Zaccaria, Remo Proietti .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (43) :16771-16800