Tumor-infiltrating dendritic cell precursors recruited by a β-defensin contribute to vasculogenesis under the influence of Vegf-A

被引:380
作者
Conejo-Garcia, JR
Benencia, F
Coureges, MC
Kang, E
Mohamed-Hadley, A
Buckanovich, RJ
Holtz, DO
Jenkins, A
Na, HN
Zhang, L
Wagner, DS
Katsaros, D
Caroll, R
Coukos, G
机构
[1] Univ Penn, Med Ctr, Ctr Res Reprod & Womens Hlth, Philadelphia, PA 19104 USA
[2] Univ Penn, Med Ctr, Abramson Family Canc Res Inst, Philadelphia, PA 19104 USA
[3] Univ Penn, Med Ctr, Dept Cell & Dev Biol, Philadelphia, PA 19104 USA
[4] Univ Turin, Dept Obstet & Gynecol, I-10126 Turin, Italy
关键词
D O I
10.1038/nm1097
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The involvement of immune mechanisms in tumor angiogenesis is unclear. Here we describe a new mechanism of tumor vasculogenesis mediated by dendritic cell (DC) precursors through the cooperation of beta-defensins and vascular endothelial growth factor-A (Vegf-A). Expression of mouse beta-defensin-29 recruited DC precursors to tumors and enhanced tumor vascularization and growth in the presence of increased Vegf-A expression. A new leukocyte population expressing DC and endothelial markers was uncovered in mouse and human ovarian carcinomas coexpressing Vegf- A and beta-defensins. Tumor-infiltrating DCs migrated to tumor vessels and independently assembled neovasculature in vivo. Bone marrow - derived DCs underwent endothelial-like differentiation ex vivo, migrated to blood vessels and promoted the growth of tumors expressing high levels of Vegf- A. We show that beta-defensins and Vegf- A cooperate to promote tumor vasculogenesis by carrying out distinct tasks: beta-defensins chemoattract DC precursors through CCR6, whereas Vegf- A primarily induces their endothelial-like specialization and migration to vessels, which is mediated by Vegf receptor-2.
引用
收藏
页码:950 / 958
页数:9
相关论文
共 45 条
[1]   Origin and differentiation of dendritic cells [J].
Ardavín, C ;
del Hoyo, GM ;
Martín, P ;
Anjuère, F ;
Arias, CF ;
Marín, AR ;
Ruiz, S ;
Parrillas, V ;
Hernández, H .
TRENDS IN IMMUNOLOGY, 2001, 22 (12) :691-700
[2]   Immunobiology of dendritic cells [J].
Banchereau, J ;
Briere, F ;
Caux, C ;
Davoust, J ;
Lebecque, S ;
Liu, YT ;
Pulendran, B ;
Palucka, K .
ANNUAL REVIEW OF IMMUNOLOGY, 2000, 18 :767-+
[3]   Defective TCR expression in transgenic mice constructed using cDNA-based α- and β-chain genes under the control of heterologous regulatory elements [J].
Barnden, MJ ;
Allison, J ;
Heath, WR ;
Carbone, FR .
IMMUNOLOGY AND CELL BIOLOGY, 1998, 76 (01) :34-40
[4]   Processing and presentation of antigens by dendritic cells: implications for vaccines [J].
Bhardwaj, N .
TRENDS IN MOLECULAR MEDICINE, 2001, 7 (09) :388-394
[5]   Mediators of innate immunity that target immature, but not mature, dendritic cells induce antitumor immunity when genetically fused with nonimmunogenic tumor antigens [J].
Biragyn, A ;
Surenhu, M ;
Yang, D ;
Ruffini, PA ;
Haines, BA ;
Klyushnenkova, E ;
Oppenheim, JJ ;
Kwak, LW .
JOURNAL OF IMMUNOLOGY, 2001, 167 (11) :6644-6653
[6]   Dendritic cells infiltrating tumors cotransduced with granulocyte macrophage colony-stimulating factor (GM-CSF) and CD40 ligand genes take up and present endogenous tumor-associated antigens, and prime naive mice for a cytotoxic T lymphocyte response [J].
Chiodoni, C ;
Paglia, P ;
Stoppacciaro, A ;
Rodolfo, M ;
Parenza, M ;
Colombo, MP .
JOURNAL OF EXPERIMENTAL MEDICINE, 1999, 190 (01) :125-133
[7]   Inflammation and cancer [J].
Coussens, LM ;
Werb, Z .
NATURE, 2002, 420 (6917) :860-867
[8]   Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells [J].
De Palma, M ;
Venneri, MA ;
Roca, C ;
Naldini, L .
NATURE MEDICINE, 2003, 9 (06) :789-795
[9]  
Duncan GS, 1999, J IMMUNOL, V162, P3022
[10]   Immuno-LCM: Laser capture microdissection of immunostained frozen sections for mRNA analysis [J].
Fend, F ;
Emmert-Buck, MR ;
Chuaqui, R ;
Cole, K ;
Lee, J ;
Liotta, LA ;
Raffeld, M .
AMERICAN JOURNAL OF PATHOLOGY, 1999, 154 (01) :61-66