On the spectrum of the Laplacian

被引:14
作者
Charalambous, Nelia [1 ]
Lu, Zhiqin [2 ]
机构
[1] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
COMPLETE RIEMANNIAN-MANIFOLDS; NONNEGATIVE RICCI CURVATURE;
D O I
10.1007/s00208-013-1000-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we prove a generalization of Weyl's criterion for the essential spectrum of a self-adjoint operator on a Hilbert space. We then apply this criterion to the Laplacian on functions over open manifolds and get new results for its essential spectrum.
引用
收藏
页码:211 / 238
页数:28
相关论文
共 20 条
[11]  
HAMILTON R.S, 1995, SURVEYS DIFFERENTIAL, VII, P7
[12]   On the spectrum of curved planar waveguides [J].
Krejcirík, D ;
Kríz, J .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2005, 41 (03) :757-791
[13]   SPECTRUM OF THE LAPLACIAN ON A COMPLETE RIEMANNIAN MANIFOLD WITH NONNEGATIVE RICCI CURVATURE WHICH POSSESS A POLE [J].
LI, JY .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1994, 46 (02) :213-216
[14]   On the essential spectrum of complete non-compact manifolds [J].
Lu, Zhiqin ;
Zhou, Detang .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 260 (11) :3283-3298
[15]  
Schoen R., 1994, C P LECT NOTES GEOME
[16]   ON THE L(P)-SPECTRUM OF UNIFORMLY ELLIPTIC-OPERATORS ON RIEMANNIAN-MANIFOLDS [J].
STURM, KT .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 118 (02) :442-453
[17]  
Wang JP, 1997, MATH RES LETT, V4, P473
[18]  
ZHOU DT, 1994, INT MATH RES NOTICES, V5, P209, DOI DOI 10.1155/S1073792894000231
[19]  
[No title captured]
[20]  
[No title captured]