On the spectrum of the Laplacian

被引:14
作者
Charalambous, Nelia [1 ]
Lu, Zhiqin [2 ]
机构
[1] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
COMPLETE RIEMANNIAN-MANIFOLDS; NONNEGATIVE RICCI CURVATURE;
D O I
10.1007/s00208-013-1000-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we prove a generalization of Weyl's criterion for the essential spectrum of a self-adjoint operator on a Hilbert space. We then apply this criterion to the Laplacian on functions over open manifolds and get new results for its essential spectrum.
引用
收藏
页码:211 / 238
页数:28
相关论文
共 20 条
[1]  
[Anonymous], 1989, CAMBRIDGE TRACTS MAT
[2]   On the equivalence of heat kernel estimates and logarithmic Sobolev inequalities for the Hodge Laplacian [J].
Charalambous, Nelia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 233 (01) :291-312
[3]  
CHEN ZH, 1992, SCI CHINA SER A, V35, P276
[4]  
Dermenjian Y, 1998, COMMUN PART DIFF EQ, V23, P141
[5]  
Donnelly H, 1999, MICH MATH J, V46, P101
[6]  
Donnelly H, 1997, INDIANA U MATH J, V46, P505
[7]   ON THE ESSENTIAL SPECTRUM OF A COMPLETE RIEMANNIAN MANIFOLD [J].
DONNELLY, H .
TOPOLOGY, 1981, 20 (01) :1-14
[9]   THE SPECTRUM OF THE LAPLACIAN OF MANIFOLDS OF POSITIVE CURVATURE [J].
ESCOBAR, JF ;
FREIRE, A .
DUKE MATHEMATICAL JOURNAL, 1992, 65 (01) :1-21
[10]  
Gilbarg D., 1983, Elliptic Partial Equations of Second Order, V2nd