Imaging thermal conductivity with nanoscale resolution using a scanning spin probe

被引:88
作者
Laraoui, Abdelghani [1 ]
Aycock-Rizzo, Halley [1 ,2 ]
Gao, Yang [1 ,3 ,4 ]
Lu, Xi
Riedo, Elisa [1 ,3 ,4 ]
Meriles, Carlos A. [1 ,2 ]
机构
[1] CUNY City Coll, Dept Phys, New York, NY 10031 USA
[2] CUNY, Grad Ctr, Phys Program, New York, NY 10016 USA
[3] CUNY, Adv Sci Res Ctr, New York, NY 10031 USA
[4] Georgia Inst Technol, Dept Phys, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
MAGNETIC-RESONANCE; THERMOMETRY; COHERENCE;
D O I
10.1038/ncomms9954
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ability to probe nanoscale heat flow in a material is often limited by lack of spatial resolution. Here, we use a diamond-nanocrystal-hosted nitrogen-vacancy centre attached to the apex of a silicon thermal tip as a local temperature sensor. We apply an electrical current to heat up the tip and rely on the nitrogen vacancy to monitor the thermal changes the tip experiences as it is brought into contact with surfaces of varying thermal conductivity. By combining atomic force and confocal microscopy, we image phantom microstructures with nanoscale resolution, and attain excellent agreement between the thermal conductivity and topographic maps. The small mass and high thermal conductivity of the diamond host make the time response of our technique short, which we demonstrate by monitoring the tip temperature upon application of a heat pulse. Our approach promises multiple applications, from the investigation of phonon dynamics in nanostructures to the characterization of heterogeneous phase transitions and chemical reactions in various solid-state systems.
引用
收藏
页数:8
相关论文
共 34 条
[1]   Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond [J].
Acosta, V. M. ;
Bauch, E. ;
Ledbetter, M. P. ;
Waxman, A. ;
Bouchard, L-S. ;
Budker, D. .
PHYSICAL REVIEW LETTERS, 2010, 104 (07)
[2]   Nanoscale thermal transport. II. 2003-2012 [J].
Cahill, David G. ;
Braun, Paul V. ;
Chen, Gang ;
Clarke, David R. ;
Fan, Shanhui ;
Goodson, Kenneth E. ;
Keblinski, Pawel ;
King, William P. ;
Mahan, Gerald D. ;
Majumdar, Arun ;
Maris, Humphrey J. ;
Phillpot, Simon R. ;
Pop, Eric ;
Shi, Li .
APPLIED PHYSICS REVIEWS, 2014, 1 (01)
[3]   The nitrogen-vacancy colour centre in diamond [J].
Doherty, Marcus W. ;
Manson, Neil B. ;
Delaney, Paul ;
Jelezko, Fedor ;
Wrachtrup, Joerg ;
Hollenberg, Lloyd C. L. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2013, 528 (01) :1-45
[4]   Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors [J].
Ferain, Isabelle ;
Colinge, Cynthia A. ;
Colinge, Jean-Pierre .
NATURE, 2011, 479 (7373) :310-316
[5]   Thermoelectric voltage at a nanometer-scale heated tip point contact [J].
Fletcher, Patrick C. ;
Lee, Byeonghee ;
King, William P. .
NANOTECHNOLOGY, 2012, 23 (03)
[6]  
Garcia R, 2014, NAT NANOTECHNOL, V9, P577, DOI [10.1038/NNANO.2014.157, 10.1038/nnano.2014.157]
[7]  
Grinolds MS, 2014, NAT NANOTECHNOL, V9, P279, DOI [10.1038/nnano.2014.30, 10.1038/NNANO.2014.30]
[8]  
Häberle T, 2015, NAT NANOTECHNOL, V10, P125, DOI [10.1038/nnano.2014.299, 10.1038/NNANO.2014.299]
[9]   Nonequilibrium Electromagnetic Fluctuations: Heat Transfer and Interactions [J].
Krueger, Matthias ;
Emig, Thorsten ;
Kardar, Mehran .
PHYSICAL REVIEW LETTERS, 2011, 106 (21)
[10]   Nanometre-scale thermometry in a living cell [J].
Kucsko, G. ;
Maurer, P. C. ;
Yao, N. Y. ;
Kubo, M. ;
Noh, H. J. ;
Lo, P. K. ;
Park, H. ;
Lukin, M. D. .
NATURE, 2013, 500 (7460) :54-U71