Generalized matrix projective synchronization of general colored networks with different-dimensional node dynamics

被引:31
作者
Wu, Zhaoyan [1 ]
Xu, Xinjian [2 ,3 ]
Chen, Guanrong [4 ]
Fu, Xinchu [2 ,3 ]
机构
[1] Jiangxi Normal Univ, Coll Math & Informat Sci, Nanchang 330022, Peoples R China
[2] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[3] Shanghai Univ, Inst Syst Sci, Shanghai 200444, Peoples R China
[4] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2014年 / 351卷 / 09期
关键词
COMPLEX; GRAPHS;
D O I
10.1016/j.jfranklin.2014.07.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the generalized matrix projective synchronization problem of general colored networks with different-dimensional node dynamics. A general colored network consists of colored nodes and edges, where the dimensions of colored node dynamics can be different in addition to the difference of the inner coupling matrices between any pair of nodes. For synchronizing a colored network onto a desired orbit with respect to the given matrices, open-plus-closed-loop controllers are designed. The closed-loop controllers are chosen as adaptive feedback and intermittent controllers, respectively. Based on the Lyapunov stability theory and mathematical induction, corresponding synchronization criteria are derived. Noticeably, many existing synchronization settings can be regarded as special cases of the present synchronization framework. Numerical simulations are provided to verify the theoretical results. (C) 2014 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:4584 / 4595
页数:12
相关论文
共 36 条
[1]   Synchronization of coupled nonidentical dynamical systems [J].
Acharyya, Suman ;
Amritkar, R. E. .
EPL, 2012, 99 (04)
[2]   Chaos reduced-order anti-synchronization of chaotic systems with fully unknown parameters [J].
Al-sawalha, M. Mossa ;
Noorani, M. S. M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (04) :1908-1920
[3]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[4]   Synchronization in complex networks under structural evolution [J].
Anzo, A. ;
Barajas-Ramirez, J. G. .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (01) :358-372
[5]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[6]   Links in edge-colored graphs [J].
Becu, J. M. ;
Dah, M. ;
Manoussakis, Y. ;
Mendy, G. .
EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (02) :442-460
[7]  
Belykh V. N., 1992, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, V2, P697, DOI 10.1142/S021812749200080X
[8]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[9]   Robust synchronization of a class of chaotic networks [J].
Celikovsky, S. ;
Lynnyk, V. ;
Chen, G. .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2013, 350 (10) :2936-2948
[10]   Generating hyperchaotic Lu attractor via state feedback control [J].
Chen, AM ;
Lu, JN ;
Lü, JH ;
Yu, SM .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 364 :103-110