In this study, a real-time cortical activity monitoring system was constructed, which could estimate cortical activities every 125 milliseconds over 2,240 vertexes from 64 channel electroencephalography signals through the Hierarchical Bayesian estimation that uses functional magnetic resonance imaging data as its prior information. Recently, functional magnetic resonance imaging has mostly been used in the neurofeedback field because it allows for high spatial resolution. However, in functional magnetic resonance imaging, the time for the neurofeedback information to reach the patient is delayed several seconds because of its poor temporal resolution. Therefore, a number of problems need to be solved to effectively implement feedback training paradigms in patients. To address this issue, this study used a new cortical activity monitoring system that improved both spatial and temporal resolution by using both functional magnetic resonance imaging data and electroencephalography signals in conjunction with one another. This system is advantageous as it can improve applications in the fields of real-time diagnosis, neurofeedback, and the brain-machine interface.