On an iteration method for a nonlinear differential-operator equation

被引:0
作者
Vinogradova, P. V. [1 ]
Zarubin, A. G.
机构
[1] Far Eastern State Transport Univ, Khabarovsk, Russia
基金
俄罗斯基础研究基金会;
关键词
Iteration Method; Operator Equation; Monotone Operator; Nonlinear Operator; Separable Hilbert Space;
D O I
10.1134/S0012266114090092
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study an iteration method for a first-order differential-operator equation with a nonlinear operator in a separable Hilbert space. The convergence of the iterative process is proved in the strong norms. Convergence estimates are derived. We present an application of the suggested method to the solution of a model initial-boundary value problem for a fourth-order parabolic equation.
引用
收藏
页码:1225 / 1231
页数:7
相关论文
共 16 条
  • [1] [Anonymous], PRIBLIZHENNOE RESHEN
  • [2] Bakushinskii A.B., 2002, ITERATSIONNYE METODY
  • [3] Bakushinskii A.B., 1998, ZH VYCH MAT MAT FIZ, V38, P1962
  • [4] Barbu V, 2010, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-4419-5542-5_1
  • [5] Chen M., 1997, APPROXIMATE SOLUTION
  • [6] Chistyakov PA, 2011, T I MAT MEKH URO RAN, V17, P303
  • [7] Gajewskii H., 1974, NICHTLINEARE OPERATO
  • [8] Krein S.G., 1967, Lineinye differentsial'nye uravneniya v banakhovom prostranstve
  • [9] Lions J. L., 1969, QUELQUES METHODES RE
  • [10] Lyashko A.D., 2006, DIFF URAVN, V42, P951