We interpret the algebra of finite rank operators as imaginaries inside a Hilbert space. We prove that the Hilbert space enlarged with these imaginaries has built-in canonical bases.
机构:
ESPOL Polytech Univ, Fac Ciencias Nat & Matemat, Dept Math, Escuela Super Politecn Litoral,ESPOL, Campus Gustavo Galindo Km 30-5 Via Perimetral, Guayaquil, EcuadorESPOL Polytech Univ, Fac Ciencias Nat & Matemat, Dept Math, Escuela Super Politecn Litoral,ESPOL, Campus Gustavo Galindo Km 30-5 Via Perimetral, Guayaquil, Ecuador
Bracamonte, Mireya
Ereu, Jurancy
论文数: 0引用数: 0
h-index: 0
机构:
Univ Centroccident Lisandro Alvarado, Dept Math, UCLA, Decanato Ciencias & Tecnol, Barquisimeto, VenezuelaESPOL Polytech Univ, Fac Ciencias Nat & Matemat, Dept Math, Escuela Super Politecn Litoral,ESPOL, Campus Gustavo Galindo Km 30-5 Via Perimetral, Guayaquil, Ecuador
Ereu, Jurancy
Marchan, Luz
论文数: 0引用数: 0
h-index: 0
机构:
ESPOL Polytech Univ, Fac Ciencias Nat & Matemat, Dept Math, Escuela Super Politecn Litoral,ESPOL, Campus Gustavo Galindo Km 30-5 Via Perimetral, Guayaquil, EcuadorESPOL Polytech Univ, Fac Ciencias Nat & Matemat, Dept Math, Escuela Super Politecn Litoral,ESPOL, Campus Gustavo Galindo Km 30-5 Via Perimetral, Guayaquil, Ecuador