A Bayesian Approach to the Analysis of Quantal Bioassay Studies Using Nonparametric Mixture Models

被引:8
作者
Fronczyk, Kassandra [1 ]
Kottas, Athanasios [2 ]
机构
[1] Rice Univ, Dept Stat, Houston, TX 77251 USA
[2] Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA
基金
美国国家科学基金会;
关键词
Calibration; Cytogenetic dosimetry; Dependent Dirichlet process; Dose-response curve; Markov chain Monte Carlo; Nonparametric mixture models; DIRICHLET PROCESSES; INFERENCE;
D O I
10.1111/biom.12120
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We develop a Bayesian nonparametric mixture modeling framework for quantal bioassay settings. The approach is built upon modeling dose-dependent response distributions. We adopt a structured nonparametric prior mixture model, which induces a monotonicity restriction for the dose-response curve. Particular emphasis is placed on the key risk assessment goal of calibration for the dose level that corresponds to a specified response. The proposed methodology yields flexible inference for the dose-response relationship as well as for other inferential objectives, as illustrated with two data sets from the literature.
引用
收藏
页码:95 / 102
页数:8
相关论文
共 29 条
[1]   MIXTURES OF DIRICHLET PROCESSES WITH APPLICATIONS TO BAYESIAN NONPARAMETRIC PROBLEMS [J].
ANTONIAK, CE .
ANNALS OF STATISTICS, 1974, 2 (06) :1152-1174
[2]   QUANTAL RESPONSE ANALYSIS FOR A MIXTURE OF POPULATIONS [J].
ASHFORD, JR ;
WALKER, PJ .
BIOMETRICS, 1972, 28 (04) :981-988
[3]   On the Support of MacEachern's Dependent Dirichlet Processes and Extensions [J].
Barrientos, Andres F. ;
Jara, Alejandro ;
Quintana, Fernando A. .
BAYESIAN ANALYSIS, 2012, 7 (02) :277-309
[4]  
Basu S, 2000, BIOSTAT-A SER REF T, V5, P231
[5]   POSTERIOR DISTRIBUTION OF A DIRICHLET PROCESS FROM QUANTAL RESPONSE DATA [J].
BHATTACHARYA, PK .
ANNALS OF STATISTICS, 1981, 9 (04) :803-811
[6]   Bayesian Nonparametric Estimation of Continuous Monotone Functions with Applications to Dose-Response Analysis [J].
Bornkamp, Bjoern ;
Ickstadt, Katja .
BIOMETRICS, 2009, 65 (01) :198-205
[7]   An ANOVA model for dependent random measures [J].
De Iorio, M ;
Müller, P ;
Rosner, GL ;
MacEachern, SN .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2004, 99 (465) :205-215
[8]   Bayesian Nonparametric Nonproportional Hazards Survival Modeling [J].
De Iorio, Maria ;
Johnson, Wesley O. ;
Mueller, Peter ;
Rosner, Gary L. .
BIOMETRICS, 2009, 65 (03) :762-771
[9]   BAYESIAN NONPARAMETRIC-INFERENCE FOR EFFECTIVE DOSES IN A QUANTAL-RESPONSE EXPERIMENT [J].
DISCH, D .
BIOMETRICS, 1981, 37 (04) :713-722
[10]   BAYESIAN ANALYSIS OF SOME NONPARAMETRIC PROBLEMS [J].
FERGUSON, TS .
ANNALS OF STATISTICS, 1973, 1 (02) :209-230