PANDA: A comprehensive and flexible tool for quantitative proteomics data analysis

被引:20
|
作者
Chang, Cheng [1 ]
Li, Mansheng [1 ]
Guo, Chaoping [2 ]
Ding, Yuqing [2 ]
Xu, Kaikun [1 ]
Han, Mingfei [1 ]
He, Fuchu [1 ]
Zhu, Yunping [1 ]
机构
[1] Natl Ctr Prot Sci Beijing, Beijing Inst Life, Beijing Proteome Res Ctr, State Key Lab Prote, Beijing 102206, Peoples R China
[2] Chinese Acad Sci, Inst Software, Beijing Key Lab Human Comp Interact, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
PEPTIDE IDENTIFICATIONS; FRAMEWORK; ACCURACY; RANGE; MS/MS;
D O I
10.1093/bioinformatics/bty727
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
As the experiment techniques and strategies in quantitative proteomics are improving rapidly, the corresponding algorithms and tools for protein quantification with high accuracy and precision are continuously required to be proposed. Here, we present a comprehensive and flexible tool named PANDA for proteomics data quantification. PANDA, which supports both label-free and labeled quantifications, is compatible with existing peptide identification tools and pipelines with considerable flexibility. Compared with MaxQuant on several complex datasets, PANDA was proved to be more accurate and precise with less computation time. Additionally, PANDA is an easy-to-use desktop application tool with user-friendly interfaces. Availability and implementation PANDA is freely available for download at https://sourceforge.net/projects/panda-tools/. Supplementary information Supplementary data are available at Bioinformatics online
引用
收藏
页码:898 / 900
页数:3
相关论文
共 50 条
  • [1] PANDA-view: an easy-to-use tool for statistical analysis and visualization of quantitative proteomics data
    Chang, Cheng
    Xu, Kaikun
    Guo, Chaoping
    Wang, Jinxia
    Yan, Qi
    Zhang, Jian
    He, Fuchu
    Zhu, Yunping
    BIOINFORMATICS, 2018, 34 (20) : 3594 - 3596
  • [2] DEP2: an upgraded comprehensive analysis toolkit for quantitative proteomics data
    Feng, Zhenhuan
    Fang, Peiyang
    Zheng, Hui
    Zhang, Xiaofei
    BIOINFORMATICS, 2023, 39 (08)
  • [3] msVolcano: A flexible web application for visualizing quantitative proteomics data
    Singh, Sukhdeep
    Hein, Marco Y.
    Stewart, A. Francis
    PROTEOMICS, 2016, 16 (18) : 2491 - 2494
  • [4] Quantitative analysis of proteomics using data mining
    Yen, CY
    Helmke, SM
    Cios, KJ
    Perryman, MB
    Duncan, MW
    IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2005, 24 (03): : 67 - 72
  • [5] MixProTool: A Powerful and Comprehensive Web Tool for Analyzing and Visualizing Multigroup Proteomics Data
    Wang, Shisheng
    Zheng, Wen
    Hu, Liqiang
    Gong, Meng
    Yang, Hao
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2018, 25 (10) : 1123 - 1127
  • [6] Rover: A tool to visualize and validate quantitative proteomics data from different sources
    Colaert, Niklaas
    Helsens, Kenny
    Impens, Francis
    Vandekerckhove, Joel
    Gevaert, Kris
    PROTEOMICS, 2010, 10 (06) : 1226 - 1229
  • [7] A quantitative analysis software tool for mass spectrometry-based proteomics
    Park S.K.
    Venable J.D.
    Xu T.
    Yates III J.R.
    Nature Methods, 2008, 5 (4) : 319 - 322
  • [8] A quantitative analysis software tool for mass spectrometry-based proteomics
    Park, Sung Kyu
    Venable, John D.
    Xu, Tao
    Yates, John R., III
    NATURE METHODS, 2008, 5 (04) : 319 - 322
  • [9] cEST: a flexible tool for calorimetric data analysis
    Pierluigi Polese
    Marilena Tolazzi
    Andrea Melchior
    Journal of Thermal Analysis and Calorimetry, 2018, 134 : 1317 - 1326
  • [10] cEST: a flexible tool for calorimetric data analysis
    Polese, Pierluigi
    Tolazzi, Marilena
    Melchior, Andrea
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2018, 134 (02) : 1317 - 1326