Spatial Compressive Sensing Approach For Field Directionality Estimation

被引:0
|
作者
Bilik, I. [1 ]
机构
[1] Univ Massachusetts, Dept Elect & Comp Engn, Dartmouth, MA 02747 USA
来源
2009 IEEE RADAR CONFERENCE, VOLS 1 AND 2 | 2009年
关键词
Field directionality estimation; Compressive sensing; Array signal processing; UNCERTAINTY PRINCIPLES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work addresses the problem of field directionality estimation using uniform linear array. Recent advances from the compressive sensing theory were invoked for this application. Motivated by a sparse representation of the field directionality in frequency-wavenumber domain, a spatial compressive sensing-based method for the field directionality estimation is proposed in this work. This method is conceptually different from other classical algorithms, achieving a high azimuth resolution using relatively short array. This work provides an alternative, spatial interpretation for the compressive sensing theory in application to array signal processing. Major advantages of the proposed approach are simplicity of an implementation and a high angular resolution achievable by short arrays.
引用
收藏
页码:1055 / 1059
页数:5
相关论文
共 50 条
  • [1] Spatial Channel Covariance Estimation for the Hybrid MIMO Architecture: A Compressive Sensing-Based Approach
    Park, Sungwoo
    Heath, Robert W., Jr.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2018, 17 (12) : 8047 - 8062
  • [2] Bearing Estimation via Spatial Sparsity using Compressive Sensing
    Gurbuz, Ali Cafer
    Cevher, Volkan
    McClellan, James H.
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2012, 48 (02) : 1358 - 1369
  • [3] Dynamic Direction-of-Arrival Estimation via Spatial Compressive Sensing
    Khomchuk, P.
    Bilik, I.
    2010 IEEE RADAR CONFERENCE, 2010, : 1191 - 1196
  • [4] A Compressive Sensing Approach to Urban Traffic Estimation with Probe Vehicles
    Zhu, Yanmin
    Li, Zhi
    Zhu, Hongzi
    Li, Minglu
    Zhang, Qian
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2013, 12 (11) : 2289 - 2302
  • [5] Underwater Acoustic Field Reconstruction Using a Compressive Sensing Approach
    Sun, Jie
    Song, Aijun
    Yu, Jiancheng
    Zhang, Aiqun
    Zhang, Fumin
    OCEANS 2017 - ANCHORAGE, 2017,
  • [6] Compressive Sensing Reconstruction for Video: An Adaptive Approach Based on Motion Estimation
    Ding, Xin
    Chen, Wei
    Wassell, Ian J.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2017, 27 (07) : 1406 - 1420
  • [7] MUSIC DOA ESTIMATION WITH COMPRESSIVE SENSING AND/OR COMPRESSIVE ARRAYS
    Jouny, Ismail
    2011 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (APSURSI), 2011, : 2016 - 2019
  • [8] Compressive Light Field Sensing
    Babacan, S. Derin
    Ansorge, Reto
    Luessi, Martin
    Ruiz Mataran, Pablo
    Molina, Rafael
    Katsaggelos, Aggelos K.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (12) : 4746 - 4757
  • [9] Spatial Compressive Sensing for MIMO Radar
    Rossi, Marco
    Haimovich, Alexander M.
    Eldar, Yonina C.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (02) : 419 - 430
  • [10] Target parameter estimation for spatial and temporal formulations in MIMO radars using compressive sensing
    Ali, Hussain
    Ahmed, Sajid
    Al-Naffouri, Tareq Y.
    Sharawi, Mohammad S.
    Alouini, Mohamed-S
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2017,