Defects and Chirality in the Nanoparticle-Directed Assembly of Spherocylindrical Shells of Virus Coat Proteins

被引:12
作者
Zeng, Cheng [1 ,3 ]
Lazaro, Guillermo Rodriguez [2 ]
Tsvetkova, Irina B. [1 ]
Hagan, Michael F. [2 ]
Dragnea, Bogdan [1 ]
机构
[1] Indiana Univ, Dept Chem, Bloomington, IN 47405 USA
[2] Brandeis Univ, Dept Phys, Waltham, MA 02453 USA
[3] Harvard Univ, SEAS, Cambridge, MA 02138 USA
基金
美国国家卫生研究院;
关键词
virus-like particles; chirality; defects; packing; nanoparticle-directed assembly; GRAPHICS PROCESSING UNITS; MOLECULAR-DYNAMICS; PARTICLES; SIZE; ARCHITECTURES; ENCAPSULATION; POLYMORPHISM; MECHANISMS; SURFACES; DELIVERY;
D O I
10.1021/acsnano.8b00069
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Virus coat proteins of small isometric plant viruses readily assemble into symmetric, icosahedral cages encapsulating noncognate cargo, provided the cargo meets a minimal set of chemical and physical requirements. While this capability has been intensely explored for certain virus-enabled nanotechnologies, additional applications require lower symmetry than that of an icosahedron. Here, we show that the coat proteins of an icosahedral virus can efficiently assemble around metal nanorods into spherocylindrical closed shells with hexagonally close-packed bodies and icosahedral caps. Comparison of chiral angles and packing defects observed by in situ atomic force microscopy with those obtained from molecular dynamics models offers insight into the mechanism of growth, and the influence of stresses associated with intrinsic curvature and assembly pathways.
引用
收藏
页码:5323 / 5332
页数:10
相关论文
共 58 条
  • [1] General purpose molecular dynamics simulations fully implemented on graphics processing units
    Anderson, Joshua A.
    Lorenz, Chris D.
    Travesset, A.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (10) : 5342 - 5359
  • [2] Self-assembly approaches to nanomaterial encapsulation in viral protein cages
    Aniagyei, Stella E.
    DuFort, Christopher
    Kao, C. Cheng
    Dragnea, Bogdan
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (32) : 3763 - 3774
  • [3] BANCROFT J B, 1970, P99, DOI 10.1016/S0065-3527(08)60022-6
  • [4] Three-dimensional structure of HIV-1 virus-like particles by electron cryotomography
    Benjamin, J
    Ganser-Pornillos, BK
    Tivol, WF
    Sundquist, WI
    Jensen, GJ
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2005, 346 (02) : 577 - 588
  • [5] Engineering Recombinant Virus-like Nanoparticles from Plants for Cellular Delivery
    Brillault, Lou
    Jutras, Philippe V.
    Dashti, Noor
    Thuenemann, Eva C.
    Morgan, Garry
    Lomonossoff, George P.
    Landsberg, Michael J.
    Sainsbury, Frank
    [J]. ACS NANO, 2017, 11 (04) : 3476 - 3484
  • [6] Casjens S., 1985, Virus Structure and Assembly, V1
  • [7] PHYSICAL PRINCIPLES IN CONSTRUCTION OF REGULAR VIRUSES
    CASPAR, DLD
    KLUG, A
    [J]. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 1962, 27 : 1 - &
  • [8] Curvature dependence of viral protein structures on encapsidated nanoemulsion droplets
    Chang, Connie B.
    Knobler, Charles M.
    Gelbart, William M.
    Mason, Thomas G.
    [J]. ACS NANO, 2008, 2 (02) : 281 - 286
  • [9] A precise packing sequence for self-assembled convex structures
    Chen, Ting
    Zhang, Zhenli
    Glotzer, Sharon C.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (03) : 717 - 722
  • [10] Simulation studies of a phenomenological model for elongated virus capsid formation
    Chen, Ting
    Glotzer, Sharon C.
    [J]. PHYSICAL REVIEW E, 2007, 75 (05)