Model-based identification of conditionally-essential genes from transposon-insertion sequencing data

被引:4
|
作者
Sarsani, Vishal [1 ]
Aldikacti, Berent [2 ]
He, Shai [1 ]
Zeinert, Rilee [3 ]
Chien, Peter [2 ]
Flaherty, Patrick [1 ]
机构
[1] Univ Massachusetts Amherst, Dept Math & Stat, Amherst, MA 01003 USA
[2] Univ Massachusetts Amherst, Dept Biochem & Mol Biol, Amherst, MA USA
[3] Eunice Kennedy Shriver Natl Inst Child Hlth & Hum, Div Mol & Cellular Biol, Bethesda, MD USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
MICROARRAYS; REGRESSION;
D O I
10.1371/journal.pcbi.1009273
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The understanding of bacterial gene function has been greatly enhanced by recent advancements in the deep sequencing of microbial genomes. Transposon insertion sequencing methods combines next-generation sequencing techniques with transposon mutagenesis for the exploration of the essentiality of genes under different environmental conditions. We propose a model-based method that uses regularized negative binomial regression to estimate the change in transposon insertions attributable to gene-environment changes in this genetic interaction study without transformations or uniform normalization. An empirical Bayes model for estimating the local false discovery rate combines unique and total count information to test for genes that show a statistically significant change in transposon counts. When applied to RB-TnSeq (randomized barcode transposon sequencing) and Tn-seq (transposon sequencing) libraries made in strains of Caulobacter crescentus using both total and unique count data the model was able to identify a set of conditionally beneficial or conditionally detrimental genes for each target condition that shed light on their functions and roles during various stress conditions.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] TnseqDiff: identification of conditionally essential genes in transposon sequencing studies
    Lili Zhao
    Mark T. Anderson
    Weisheng Wu
    Harry L. T. Mobley
    Michael A. Bachman
    BMC Bioinformatics, 18
  • [2] TnseqDiff: identification of conditionally essential genes in transposon sequencing studies
    Zhao, Lili
    Anderson, Mark T.
    Wu, Weisheng
    Mobley, Harry L. T.
    Bachman, Michael A.
    BMC BIOINFORMATICS, 2017, 18
  • [3] High-resolution definition of the Vibrio cholerae essential gene set with hidden Markov model-based analyses of transposon-insertion sequencing data
    Chao, Michael C.
    Pritchard, Justin R.
    Zhang, Yanjia J.
    Rubin, Eric J.
    Livny, Jonathan
    Davis, Brigid M.
    Waldor, Matthew K.
    NUCLEIC ACIDS RESEARCH, 2013, 41 (19) : 9033 - 9048
  • [4] Normalization of transposon-mutant library sequencing datasets to improve identification of conditionally essential genes
    DeJesus, Michael A.
    Ioerger, Thomas R.
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2016, 14 (03)
  • [5] Identification of essential genes by transposon insertion sequencing and genome-scale metabolic model construction in Streptococcus suis
    Zhang, Yongqing
    Gong, Ruotong
    Liang, Menglei
    Zhang, Liangsheng
    Liu, Xiujian
    Zeng, Jingzi
    Yan, Mengli
    Qiu, Dexin
    Zhou, Rui
    Huang, Qi
    MICROBIOLOGY SPECTRUM, 2025,
  • [6] Genome-wide identification of root colonization fitness genes in plant growth promoting Pseudomonas asiatica employing transposon-insertion sequencing
    Pranav, Parameswaran Sree
    Sivakumar, Ramamoorthy
    Suvekbala, Vemparthan
    Rajendhran, Jeyaprakash
    ANNALS OF MICROBIOLOGY, 2024, 74 (01)
  • [7] Identification of putative essential protein domains from high-density transposon insertion sequencing
    A. S. M. Zisanur Rahman
    Lukas Timmerman
    Flyn Gallardo
    Silvia T. Cardona
    Scientific Reports, 12
  • [8] Identification of putative essential protein domains from high-density transposon insertion sequencing
    Rahman, A. S. M. Zisanur
    Timmerman, Lukas
    Gallardo, Flyn
    Cardona, Silvia T.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [9] A Hidden Markov Model for identifying essential and growth-defect regions in bacterial genomes from transposon insertion sequencing data
    DeJesus, Michael A.
    Ioerger, Thomas R.
    BMC BIOINFORMATICS, 2013, 14
  • [10] A Hidden Markov Model for identifying essential and growth-defect regions in bacterial genomes from transposon insertion sequencing data
    Michael A DeJesus
    Thomas R Ioerger
    BMC Bioinformatics, 14