Fate of classical solitons in one-dimensional quantum systems

被引:12
作者
Pustilnik, M. [1 ]
Matveev, K. A. [2 ]
机构
[1] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
[2] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
来源
PHYSICAL REVIEW B | 2015年 / 92卷 / 19期
关键词
DELTA-FUNCTION INTERACTION; INTERACTING BOSE-GAS; EQUATION; OPERATORS; VORTEX; FLUIDS; 1D;
D O I
10.1103/PhysRevB.92.195146
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study one-dimensional quantum systems near the classical limit described by the Korteweg-de Vries (KdV) equation. The excitations near this limit are the well-known solitons and phonons. The classical description breaks down at long wavelengths, where quantum effects become dominant. Focusing on the spectra of the elementary excitations, we describe analytically the entire classical-to-quantum crossover. We show that the ultimate quantum fate of the classical KdV excitations is to become fermionic particles and holes. We discuss in detail two exactly solvable models exhibiting such crossover, namely the Lieb-Liniger model of bosons with weak contact repulsion and the quantum Toda model. We argue that the results obtained for these models are universally applicable to all quantum one-dimensional systems with a well-defined classical limit described by the KdV equation.
引用
收藏
页数:15
相关论文
共 62 条
[41]   QUANTIZATION OF (SIN PSI)2 INTERACTION IN TERMS OF FERMION VARIABLES [J].
POGREBKOV, AK ;
SUSHKO, VN .
THEORETICAL AND MATHEMATICAL PHYSICS, 1975, 24 (03) :935-937
[42]   Quantizing the KdV equation [J].
Pogrebkov, AK .
THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 129 (02) :1586-1595
[43]  
Popov V. N., 1973, Theoretical and Mathematical Physics, V11, P565, DOI 10.1007/BF01028373
[44]   THEORY OF ONE-DIMENSIONAL BOSE-GAS WITH POINT INTERACTION [J].
POPOV, VN .
THEORETICAL AND MATHEMATICAL PHYSICS, 1977, 30 (03) :222-226
[45]   Dissipationless kinetics of one-dimensional interacting fermions [J].
Protopopov, I. V. ;
Gutman, D. B. ;
Oldenburg, M. ;
Mirlin, A. D. .
PHYSICAL REVIEW B, 2014, 89 (16)
[46]   Dynamics of waves in one-dimensional electron systems: Density oscillations driven by population inversion [J].
Protopopov, I. V. ;
Gutman, D. B. ;
Schmitteckert, P. ;
Mirlin, A. D. .
PHYSICAL REVIEW B, 2013, 87 (04)
[47]   Solitons in a one-dimensional Wigner crystal [J].
Pustilnik, M. ;
Matveev, K. A. .
PHYSICAL REVIEW B, 2015, 91 (16)
[48]   Low-energy excitations of a one-dimensional Bose gas with weak contact repulsion [J].
Pustilnik, M. ;
Matveev, K. A. .
PHYSICAL REVIEW B, 2014, 89 (10)
[49]   Decay of Bogoliubov quasiparticles in a nonideal one-dimensional Bose gas [J].
Ristivojevic, Zoran ;
Matveev, K. A. .
PHYSICAL REVIEW B, 2014, 89 (18)
[50]   Fermionic quasiparticle representation of Tomonaga-Luttinger Hamiltonian [J].
Rozhkov, AV .
EUROPEAN PHYSICAL JOURNAL B, 2005, 47 (02) :193-206