-Laplacian problems involving critical Hardy-Sobolev exponents

被引:0
作者
Perera, Kanishka [1 ]
Zou, Wenming [2 ]
机构
[1] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2018年 / 25卷 / 03期
关键词
p-Laplacian problems; Critical Hardy-Sobolev exponents; Existence; Multiplicity; Bifurcation; Critical point theory; Cohomological index; Pseudo-index; P-LAPLACIAN; NONLINEARITY; BIFURCATION; EQUATIONS; LINKING;
D O I
10.1007/s00030-018-0517-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove existence, multiplicity, and bifurcation results for p-Laplacian problems involving critical Hardy-Sobolev exponents. Our results are mainly for the case and extend results in the literature for . In the absence of a direct sum decomposition, we use critical point theorems based on a cohomological index and a related pseudo-index.
引用
收藏
页数:16
相关论文
共 13 条
[1]  
[Anonymous], 2010, Morse Theoretic Aspects of p-Laplacian Type Operators. Mathematical surveys and monographs
[2]   ABSTRACT CRITICAL-POINT THEOREMS AND APPLICATIONS TO SOME NON-LINEAR PROBLEMS WITH STRONG RESONANCE AT INFINITY [J].
BARTOLO, P ;
BENCI, V ;
FORTUNATO, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (09) :981-1012
[3]   ON CRITICAL-POINT THEORY FOR INDEFINITE FUNCTIONALS IN THE PRESENCE OF SYMMETRIES [J].
BENCI, V .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 274 (02) :533-572
[4]   Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity [J].
Degiovanni, Marco ;
Lancelotti, Sergio .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (06) :907-919
[5]   Linking solutions for p-Laplace equations with nonlinearity at critical growth [J].
Degiovanni, Marco ;
Lancelotti, Sergio .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (11) :3643-3659
[6]   GENERALIZED CO-HOMOLOGICAL INDEX THEORIES FOR LIE GROUP ACTIONS WITH AN APPLICATION TO BIFURCATION QUESTIONS FOR HAMILTONIAN SYSTEMS [J].
FADELL, ER ;
RABINOWITZ, PH .
INVENTIONES MATHEMATICAE, 1978, 45 (02) :139-174
[7]   Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents [J].
Ghoussoub, N ;
Yuan, C .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (12) :5703-5743
[8]   The Brezis-Nirenberg problem for the fractional p-Laplacian [J].
Mosconi, Sunra ;
Perera, Kanishka ;
Squassina, Marco ;
Yang, Yang .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (04)
[9]   p-laplacian problems where the nonlinearity crosses an eigenvalue [J].
Perera, K ;
Szulkin, A .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 13 (03) :743-753
[10]  
PERERA K., 2003, Topol. Methods Nonlinear Anal., V21, P301