A robust a-posteriori error estimator for discontinuous Galerkin methods for convection-diffusion equations

被引:50
作者
Schoetzau, Dominik [1 ]
Zhu, Liang [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Discontinuous Galerkin methods; Robust a-posteriori error estimation; Convection-diffusion equations;
D O I
10.1016/j.apnum.2008.12.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A robust a-posteriori error estimator for interior penalty discontinuous Galerkin discretizations of a stationary convection-diffusion equation is derived. The estimator yields global upper and lower bounds of the error measured in terms of the energy norm and a semi-norm associated with the convective term in the equation. The ratio of the upper and lower bounds is independent of the magnitude of the Peclet number of the problem, and hence the estimator is fully robust for convection-dominated problems. Numerical examples are presented that illustrate the robustness and practical performance of the proposed error estimator in an adaptive refinement strategy. (C) 2008 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:2236 / 2255
页数:20
相关论文
共 29 条
[1]  
AINSWORTH M, 2000, WILEY NTERSCIENCE SE
[2]  
[Anonymous], 1999, HIGH ORDER METHODS C
[3]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[4]  
BANGERTH W, 2003, ACM T MATH SOFTWARE, V24, P1
[5]  
BANGERTH W, 2005, DIFFERENTIAL EQUATIO
[6]   A finite element method for domain decomposition with non-matching grids [J].
Becker, R ;
Hansbo, P ;
Stenberg, R .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (02) :209-225
[7]   An A posteriori error estimate for the local discontinuous Galerkin method applied to linear and nonlinear diffusion problems [J].
Bustinza, R ;
Gatica, GN ;
Cockburn, B .
JOURNAL OF SCIENTIFIC COMPUTING, 2005, 22-3 (01) :147-185
[8]   Runge-Kutta discontinuous Galerkin methods for convection-dominated problems [J].
Cockburn, Bernardo ;
Shu, Chi-Wang .
Journal of Scientific Computing, 2001, 16 (03) :173-261
[9]  
Cockburn B., 2000, Lect. Notes Comput. Sci. Eng., V11
[10]  
El Alaoui L, 2007, IMA J NUMER ANAL, V27, P151, DOI [10.1093/imanum/dr1011, 10.1093/imanum/drl011]