A RBF-ARX model-based robust MPC for tracking control without steady state knowledge

被引:20
|
作者
Zhou, Feng [1 ,2 ]
Peng, Hui [1 ,2 ]
Qin, Yemei [2 ,3 ]
Zeng, Xiaoyong [1 ,2 ]
Tian, Xiaoying [1 ,2 ]
Xu, Wenquan [1 ,2 ]
机构
[1] Cent S Univ, Sch Informat Sci & Engn, Changsha 410083, Hunan, Peoples R China
[2] Collaborat Innovat Ctr Resource Conserving & Envi, Changsha 410083, Hunan, Peoples R China
[3] Hunan Univ Commerce, Sch Comp & Informat Engn, Changsha 410205, Hunan, Peoples R China
基金
对外科技合作项目(国际科技项目); 中国国家自然科学基金;
关键词
Model predictive control; Radial basis function networks; Robustness; CSTR process; Two tank system; CONSTRAINED NONLINEAR-SYSTEMS; LINEAR MATRIX INEQUALITIES; PREDICTIVE CONTROL; LPV SYSTEMS; TANK SYSTEM; STABILITY;
D O I
10.1016/j.jprocont.2016.12.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A RBF-ARX modeling and robust model predictive control (MPC) approach to achieving output-tracking control of the nonlinear system with unknown steady-state knowledge is proposed. On the basis of the RBF-ARX model with considering the system time delay, a local linearization state-space model is obtained to represent the current behavior of the nonlinear system, and a polytopic uncertain linear parameter varying (LPV) state-space model is built to represent the future system's nonlinear behavior. Based on the two models, a quasi-min-max MPC algorithm with constraint is designed for output tracking control of the nonlinear system with unknown steady state knowledge. The optimization problem of the quasi-min-max MPC algorithm is finally converted to the convex linear matrix inequalities (LMIs) optimization problem. Closed-loop stability of the MPC strategy is guaranteed by the use of parameter-dependent Lyapunov function and feasibility of the LMIs. Two examples, i.e. the modeling and control of a continuously stirred tank reactor (CSTR) and a two tank system demonstrate the effectiveness of the RBF-ARX modeling and robust MPC approach. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:42 / 54
页数:13
相关论文
共 50 条
  • [41] Robust pedestrian tracking using a model-based approach
    Masoud, D
    Papanikolopoulos, NP
    IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, 1997, : 338 - 343
  • [42] A Polytopic Model-Based Robust Predictive Control Scheme for Path Tracking of Autonomous Vehicles
    Liang, Jinhao
    Tian, Qingyun
    Feng, Jiwei
    Pi, Dawei
    Yin, Guodong
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (02): : 3928 - 3939
  • [43] A Novel Model-Based Robust Control for Position Tracking of Permanent Magnet Linear Motor
    Liu, Xiaoli
    Zhen, Shengchao
    Sun, Hao
    Zhao, Han
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (09) : 7767 - 7777
  • [44] LPV Model-Based Tracking Control and Robust Sensor Fault Diagnosis for a Quadrotor UAV
    Ronay Lopez-Estrada, Francisco
    Ponsart, Jean-Christophe
    Theilliol, Didier
    Zhang, Youmin
    Astorga-Zaragoza, Carlos-Manuel
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2016, 84 (1-4) : 163 - 177
  • [45] Robust Tracking Control for Electrohydraulic System Using an Internal Model-Based Sliding Surface
    Sun, Hao
    Sun, Zongxuan
    Li, Shihua
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2022, 144 (06):
  • [46] LPV Model-Based Tracking Control and Robust Sensor Fault Diagnosis for a Quadrotor UAV
    Francisco Ronay López-Estrada
    Jean-Christophe Ponsart
    Didier Theilliol
    Youmin Zhang
    Carlos-Manuel Astorga-Zaragoza
    Journal of Intelligent & Robotic Systems, 2016, 84 : 163 - 177
  • [47] Robust Trajectory Tracking Error Model-Based Predictive Control for Unmanned Ground Vehicles
    Kayacan, Erkan
    Ramon, Herman
    Saeys, Wouter
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2016, 21 (02) : 806 - 814
  • [48] Model-Based Robust Tracking Attitude and Altitude Control of an Uncertain Quadrotor Under Disturbances
    Hassani, Hamid
    Mansouri, Anass
    Ahaitouf, Ali
    INTERNATIONAL JOURNAL OF AERONAUTICAL AND SPACE SCIENCES, 2024, 25 (04) : 1464 - 1478
  • [49] Cubic-RBF-ARX modeling and model-based optimal setting control in head and tail stages of cut tobacco drying process
    Zhou, Feng
    Peng, Hui
    Ruan, Wenjie
    Wang, Dan
    Liu, Mingyue
    Gu, Yunfeng
    Li, Li
    NEURAL COMPUTING & APPLICATIONS, 2018, 30 (04): : 1039 - 1053
  • [50] Cubic-RBF-ARX modeling and model-based optimal setting control in head and tail stages of cut tobacco drying process
    Feng Zhou
    Hui Peng
    Wenjie Ruan
    Dan Wang
    Mingyue Liu
    Yunfeng Gu
    Li Li
    Neural Computing and Applications, 2018, 30 : 1039 - 1053