Evaluation of image registration spatial accuracy using a Bayesian hierarchical model

被引:2
作者
Liu, Suyu [1 ]
Yuan, Ying [1 ]
Castillo, Richard [2 ]
Guerrero, Thomas [2 ]
Johnson, Valen E. [3 ]
机构
[1] Univ Texas Houston, MD Anderson Canc Ctr, Dept Biostat, Houston, TX 77030 USA
[2] Univ Texas Houston, MD Anderson Canc Ctr, Dept Radiat Oncol, Houston, TX 77030 USA
[3] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
关键词
Bayesian analysis; Image processing; Latent variable; Spatial correlation; DEFORMABLE REGISTRATION; RADIATION-THERAPY; MOTION ESTIMATION; OPTICAL-FLOW; CT; NONLINEARITY;
D O I
10.1111/biom.12146
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
To evaluate the utility of automated deformable image registration (DIR) algorithms, it is necessary to evaluate both the registration accuracy of the DIR algorithm itself, as well as the registration accuracy of the human readers from whom the gold standard is obtained. We propose a Bayesian hierarchical model to evaluate the spatial accuracy of human readers and automatic DIR methods based on multiple image registration data generated by human readers and automatic DIR methods. To fully account for the locations of landmarks in all images, we treat the true locations of landmarks as latent variables and impose a hierarchical structure on the magnitude of registration errors observed across image pairs. DIR registration errors are modeled using Gaussian processes with reference prior densities on prior parameters that determine the associated covariance matrices. We develop a Gibbs sampling algorithm to efficiently fit our models to high-dimensional data, and apply the proposed method to analyze an image dataset obtained from a 4D thoracic CT study.
引用
收藏
页码:366 / 377
页数:12
相关论文
共 26 条
  • [1] Contact surface and material nonlinearity modeling of human lungs
    Al-Mayah, A.
    Moseley, J.
    Brock, K. K.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2008, 53 (01) : 305 - 317
  • [2] Objective Bayesian analysis of spatially correlated data
    Berger, JO
    De Oliveira, V
    Sansó, B
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) : 1361 - 1374
  • [3] 4D-CT lung motion estimation with deformable registration: Quantification of motion nonlinearity and hysteresis
    Boldea, Vlad
    Sharp, Gregory C.
    Jiang, Steve B.
    Sarrut, David
    [J]. MEDICAL PHYSICS, 2008, 35 (03) : 1008 - 1018
  • [4] Four-dimensional deformable image registration using trajectory modeling
    Castillo, Edward
    Castillo, Richard
    Martinez, Josue
    Shenoy, Maithili
    Guerrero, Thomas
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (01) : 305 - 327
  • [5] A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets
    Castillo, Richard
    Castillo, Edward
    Guerra, Rudy
    Johnson, Valen E.
    McPhail, Travis
    Garg, Amit K.
    Guerrero, Thomas
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2009, 54 (07) : 1849 - 1870
  • [6] Implementation and evaluation of various demons deformable image registration algorithms on a GPU
    Gu, Xuejun
    Pan, Hubert
    Liang, Yun
    Castillo, Richard
    Yang, Deshan
    Choi, Dongju
    Castillo, Edward
    Majumdar, Amitava
    Guerrero, Thomas
    Jiang, Steve B.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (01) : 207 - 219
  • [7] Intrathoracic tumour motion estimation from CT imaging using the 3D optical flow method
    Guerrero, T
    Zhang, G
    Huang, TC
    Lin, KP
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2004, 49 (17) : 4147 - 4161
  • [8] Hof H, 2003, STRAHLENTHER ONKOL, V179, P542, DOI 10.1007/s00066-003-1070-8
  • [9] DETERMINING OPTICAL-FLOW
    HORN, BKP
    SCHUNCK, BG
    [J]. ARTIFICIAL INTELLIGENCE, 1981, 17 (1-3) : 185 - 203
  • [10] Bayesian Model Assessment Using Pivotal Quantities
    Johnson, Valen E.
    [J]. BAYESIAN ANALYSIS, 2007, 2 (04): : 719 - 733