EULER EQUATIONS AND TURBULENCE: ANALYTICAL APPROACH TO INTERMITTENCY

被引:29
作者
Cheskidov, A. [1 ]
Shvydkoy, R. [1 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
基金
美国国家科学基金会;
关键词
turbulence; intermittency; Euler equations; ENERGY-CONSERVATION; DISSIPATION; CONJECTURE; SPECTRUM;
D O I
10.1137/120876447
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Physical models of intermittency in fully developed turbulence employ many phenomenological concepts, including active volumes, regions, eddies, and energy accumulation sets, used to describe nonuniformity of the energy cascade. In this paper we give those notions a precise mathematical meaning in the language of the Littlewood-Paley analysis. We further use our definitions to recover scaling laws for the energy spectrum and second order structure function with proper intermittency correction.
引用
收藏
页码:353 / 374
页数:22
相关论文
共 27 条
  • [1] Adams D.R., 1996, GRUNDLEHREN MATH WIS, V314
  • [2] [Anonymous], 1983, P INT SCH PHYS ENR F
  • [3] [Anonymous], 1997, Contemporary Mathematics
  • [4] HIGH-ORDER VELOCITY STRUCTURE FUNCTIONS IN TURBULENT SHEAR FLOWS
    ANSELMET, F
    GAGNE, Y
    HOPFINGER, EJ
    ANTONIA, RA
    [J]. JOURNAL OF FLUID MECHANICS, 1984, 140 (MAR) : 63 - 89
  • [5] Energy conservation and Onsager's conjecture for the Euler equations
    Cheskidov, A.
    Constantin, P.
    Friedlander, S.
    Shvydkoy, R.
    [J]. NONLINEARITY, 2008, 21 (06) : 1233 - 1252
  • [6] Cheskidov A., PREPRINT
  • [7] Cheskidov A., 2012, LONDON MATH SOC LECT, V402, P52, DOI DOI 10.1017/CB09781139235792.004
  • [8] The vanishing viscosity limit for a dyadic model
    Cheskidov, Alexey
    Friedlander, Susan
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (08) : 783 - 787
  • [9] Bounds for second order structure functions and energy spectrum in turbulence
    Constantin, P
    Nie, Q
    Tanveer, S
    [J]. PHYSICS OF FLUIDS, 1999, 11 (08) : 2251 - 2256
  • [10] ONSAGER CONJECTURE ON THE ENERGY-CONSERVATION FOR SOLUTIONS OF EULER EQUATION
    CONSTANTIN, P
    TITI, ES
    WEINAN, F
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (01) : 207 - 209