Evaluation of different potassium salts as activators for hierarchically porous carbons and their applications in CO2 adsorption

被引:84
|
作者
Cui, Hongmin [1 ]
Xu, Jianguo [1 ]
Shi, Jinsong [1 ]
You, Shengyong [1 ]
Zhang, Chao [2 ,3 ]
Yan, Nanfu [1 ]
Liu, Yuewei [1 ]
Chen, Guihua [1 ]
机构
[1] Jiangxi Acad Sci, Inst Appl Chem, 7777 ChangDong Ave, Nanchang 330096, Jiangxi, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun 130022, Peoples R China
[3] Chinese Acad Sci, Changchun Inst Appl Chem, Lab Green Chem & Proc, Changchun 130022, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; adsorption; Nitrogen doping; Activation; Potassium salts; Porous carbon; ULTRAHIGH PORE VOLUME; HIGH-SURFACE-AREA; NANOPOROUS CARBONS; MESOPOROUS CARBON; LOW-TEMPERATURE; NITROGEN; CAPTURE; BIOMASS; CAPACITY; DIOXIDE;
D O I
10.1016/j.jcis.2020.09.022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
KOH is one of the most widely used activators for the synthesis of highly porous carbon. However, the strong causticity of KOH could cause serious equipment damage and safety issues at high temperature. In the current work, we presented the synthesis of porous carbons with large surface area using four different potassium salts (CH3COOK, KHCO3, K2CO3, and K2C2O4 center dot H2O) as mild but effective activators. Hydrochar prepared from the hydrothermal carbonization of glucosamine hydrochloride was used as carbon precursor. The carbons exhibited specific surface area up to 2403 m(2)/g. In order to reveal the different influences of nitrogen doping and textural properties under low and high pressure conditions, CO2 adsorption was tested with pressure up to 20 bar. At 1 bar, ultramicropore was the most determinant factor. Nitrogen doping also showed important influences, especially on the CO2/N-2 selectivity. At 20 bar, the carbon activated by KHCO3 showed CO2 uptakes of 26.24 (0 degrees C) and 18.63 mmol/g (25 degrees C). The experiment results indicated that the uptake at 20 bar correlated with the total surface area and total porosity of the carbon, and no apparent effects from nitrogen doping were observed. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:40 / 49
页数:10
相关论文
共 50 条
  • [1] Direct synthesis of N, S co-doped porous carbons using novel organic potassium salts as activators for efficient CO2 adsorption
    Cui, Hongmin
    Shi, Jinsong
    Xu, Jianguo
    Yan, Nanfu
    Liu, Yuewei
    FUEL, 2023, 342
  • [2] Fabrication of nitrogen doped and hierarchically porous carbon flowers for CO2 adsorption
    Shi, Jinsong
    Cui, Hongmin
    Xu, Jianguo
    Yan, Nanfu
    Zhang, Chao
    You, Shengyong
    JOURNAL OF CO2 UTILIZATION, 2021, 51
  • [3] Biomass derived nitrogen and sulfur co-doped porous carbons for efficient CO2 adsorption
    Ma, Changdan
    Lu, Tingyan
    Shao, Jiawei
    Huang, Jiamei
    Hu, Xin
    Wang, Linlin
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 281
  • [4] Areca nut-derived porous carbons for supercapacitor and CO2 capture applications
    Chou, Tzu-min
    Hong, Jin-Long
    IONICS, 2020, 26 (03) : 1419 - 1429
  • [5] Efficient CO2 adsorption and mechanism on nitrogen-doped porous carbons
    Wang, Yanxia
    Hu, Xiude
    Guo, Tuo
    Hao, Jian
    Si, Chongdian
    Guo, Qingjie
    FRONTIERS OF CHEMICAL SCIENCE AND ENGINEERING, 2021, 15 (03) : 493 - 504
  • [6] Natural Products Derived Porous Carbons for CO2 Capture
    Khosrowshahi, Mobin Safarzadeh
    Mashhadimoslem, Hossein
    Shayesteh, Hadi
    Singh, Gurwinder
    Khakpour, Elnaz
    Guan, Xinwei
    Rahimi, Mohammad
    Maleki, Farid
    Kumar, Prashant
    Vinu, Ajayan
    ADVANCED SCIENCE, 2023, 10 (36)
  • [7] Rational design of β-cyclodextrins-derived hierarchically porous carbons for CO2 capture: The roles of surface chemistry and porosity on CO2 capture
    Zhang, Yaofei
    Shi, Weiwei
    Zhang, Shouren
    Zhao, Shuang
    Yang, Baocheng
    Chang, Binbin
    JOURNAL OF CO2 UTILIZATION, 2022, 66
  • [8] Structurally Controllable Hay-Slag-Based Porous Carbons for Supercapacitor and CO2 Adsorption Applications
    Min, Jiayu
    Zhu, Jiayi
    Bi, Yutie
    Ren, Hongbo
    INTERNATIONAL JOURNAL OF NANOSCIENCE, 2022, 21 (06)
  • [9] One-step synthesis of highly porous nitrogen doped carbon from the direct pyrolysis of potassium phthalimide for CO2 adsorption
    Shi, Jinsong
    Cui, Hongmin
    Xu, Jianguo
    Yan, Nanfu
    Liu, Yuewei
    Zhang, Shaowei
    JOURNAL OF CO2 UTILIZATION, 2020, 39 (39)
  • [10] Preparation of porous carbons based on polyvinylidene fluoride for CO2 adsorption: A combined experimental and computational study
    Hong, Seok-Min
    Lim, Geunsik
    Kim, Sung Hyun
    Kim, Jong Hak
    Lee, Ki Bong
    Ham, Hyung Chul
    MICROPOROUS AND MESOPOROUS MATERIALS, 2016, 219 : 59 - 65