Machine Learning and Deep Learning in Chemical Health and Safety: A Systematic Review of Techniques and Applications

被引:102
|
作者
Jiao, Zeren [1 ]
Hu, Pingfan [1 ]
Xu, Hongfei [1 ]
Wang, Qingsheng [1 ]
机构
[1] Texas A&M Univ, Artie McFerrin Dept Chem Engn, Mary Kay OConnor Proc Safety Ctr, College Stn, TX 77843 USA
关键词
machine learning; deep learning; artificial intelligence; chemical health; process safety; CONVOLUTIONAL NEURAL-NETWORK; PROPERTY RELATIONSHIP MODELS; SKIN SENSITIZATION POTENCY; MINIMUM IGNITION ENERGY; SUPPORT VECTOR MACHINE; IN-SILICO PREDICTION; FAULT-DIAGNOSIS; DISPERSION PREDICTION; FLAMMABILITY LIMITS; RELATIONSHIP QSPR;
D O I
10.1021/acs.chas.0c00075
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Machine learning (ML) and deep learning (DL) are a subset of artificial intelligence (AI) that can automatically learn from data and can perform tasks such as predictions and decision-making. Interdisciplinary studies combining ML/DL with chemical health and safety have demonstrated their unparalleled advantages in identifying trend and prediction assistance, which can greatly save manpower, material resources, and financial resources. In this Review, commonly used ML/DL tools and concepts as well as popular ML/DL algorithms are introduced and discussed. More than 100 papers have been categorized and summarized to present the current development of ML/DL-based research in the area of chemical health and safety. In addition, the limitation of current studies and prospects of ML/DL-based study are also discussed. This Review can serve as useful guidance for researchers who are interested in implementing ML/DL into chemical health and safety research and for readers who try to learn more information about novel ML/DL techniques and applications.
引用
收藏
页码:316 / 334
页数:19
相关论文
共 50 条
  • [11] A Review of Machine Learning and Deep Learning Applications
    Shinde, Pramila P.
    Shah, Seema
    2018 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA), 2018,
  • [12] Machine learning and deep learning for safety applications: Investigating the intellectual structure and the temporal evolution
    Leoni, Leonardo
    Bahootoroody, Ahmad
    Abaei, Mohammad Mahdi
    Cantini, Alessandra
    Bahootoroody, Farshad
    De Carlo, Filippo
    SAFETY SCIENCE, 2024, 170
  • [13] Applications and Techniques of Machine Learning in Cancer Classification: A Systematic Review
    Abrar Yaqoob
    Rabia Musheer Aziz
    Navneet Kumar verma
    Human-Centric Intelligent Systems, 2023, 3 (4): : 588 - 615
  • [14] Systematic Review of Machine Learning and Deep Learning Techniques for Spatiotemporal Air Quality Prediction
    Agbehadji, Israel Edem
    Obagbuwa, Ibidun Christiana
    ATMOSPHERE, 2024, 15 (11)
  • [15] Application of machine learning and deep learning techniques on reverse vaccinology – a systematic literature review
    Alashwal, Hany
    Kochunni, Nishi Palakkal
    Hayawi, Kadhim
    Soft Computing, 2025, 29 (01) : 391 - 403
  • [16] Machine learning and deep learning techniques for poultry tasks management: a review
    Subramani T.
    Jeganathan V.
    Kunkuma Balasubramanian S.
    Multimedia Tools and Applications, 2025, 84 (2) : 603 - 645
  • [17] The Significance of Machine Learning and Deep Learning Techniques in Cybersecurity: A Comprehensive Review
    Mijwil M.M.
    Salem I.E.
    Ismaeel M.M.
    Iraqi Journal for Computer Science and Mathematics, 2023, 4 (01): : 87 - 101
  • [18] Is deep learning superior to traditional techniques in machine health monitoring applications
    Wang, W.
    Vos, K.
    Taylor, J.
    Jenkins, C.
    Bala, B.
    Whitehead, L.
    Peng, Z.
    AERONAUTICAL JOURNAL, 2023, 127 (1318) : 2105 - 2117
  • [19] Machine Learning and Deep Learning in Detection of Neonatal Seizures: A Systematic Review
    Naz, Ruya
    Orsal, Ozlem
    JOURNAL OF EVALUATION IN CLINICAL PRACTICE, 2025, 31 (03)
  • [20] Automation in Agriculture by Machine and Deep Learning Techniques: A Review of Recent Developments
    Saleem, Muhammad Hammad
    Potgieter, Johan
    Arif, Khalid Mahmood
    PRECISION AGRICULTURE, 2021, 22 (06) : 2053 - 2091