Machine Learning and Deep Learning in Chemical Health and Safety: A Systematic Review of Techniques and Applications

被引:102
|
作者
Jiao, Zeren [1 ]
Hu, Pingfan [1 ]
Xu, Hongfei [1 ]
Wang, Qingsheng [1 ]
机构
[1] Texas A&M Univ, Artie McFerrin Dept Chem Engn, Mary Kay OConnor Proc Safety Ctr, College Stn, TX 77843 USA
关键词
machine learning; deep learning; artificial intelligence; chemical health; process safety; CONVOLUTIONAL NEURAL-NETWORK; PROPERTY RELATIONSHIP MODELS; SKIN SENSITIZATION POTENCY; MINIMUM IGNITION ENERGY; SUPPORT VECTOR MACHINE; IN-SILICO PREDICTION; FAULT-DIAGNOSIS; DISPERSION PREDICTION; FLAMMABILITY LIMITS; RELATIONSHIP QSPR;
D O I
10.1021/acs.chas.0c00075
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Machine learning (ML) and deep learning (DL) are a subset of artificial intelligence (AI) that can automatically learn from data and can perform tasks such as predictions and decision-making. Interdisciplinary studies combining ML/DL with chemical health and safety have demonstrated their unparalleled advantages in identifying trend and prediction assistance, which can greatly save manpower, material resources, and financial resources. In this Review, commonly used ML/DL tools and concepts as well as popular ML/DL algorithms are introduced and discussed. More than 100 papers have been categorized and summarized to present the current development of ML/DL-based research in the area of chemical health and safety. In addition, the limitation of current studies and prospects of ML/DL-based study are also discussed. This Review can serve as useful guidance for researchers who are interested in implementing ML/DL into chemical health and safety research and for readers who try to learn more information about novel ML/DL techniques and applications.
引用
收藏
页码:316 / 334
页数:19
相关论文
共 50 条
  • [1] Applications of Artificial Intelligence, Machine Learning, and Deep Learning in Nutrition: A Systematic Review
    Armand, Tagne Poupi Theodore
    Nfor, Kintoh Allen
    Kim, Jung-In
    Kim, Hee-Cheol
    NUTRIENTS, 2024, 16 (07)
  • [2] AI in Endoscopic Gastrointestinal Diagnosis: A Systematic Review of Deep Learning and Machine Learning Techniques
    Lewis, Jovita Relasha
    Pathan, Sameena
    Kumar, Preetham
    Dias, Cifha Crecil
    IEEE ACCESS, 2024, 12 : 163764 - 163786
  • [3] A review of deep learning and machine learning techniques for hydrological inflow forecasting
    Latif, Sarmad Dashti
    Ahmed, Ali Najah
    ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2023, 25 (11) : 12189 - 12216
  • [4] A systematic review of machine learning algorithms for prognostics and health management of rolling element bearings: fundamentals, concepts and applications
    Singh, Jaskaran
    Azamfar, Moslem
    Li, Fei
    Lee, Jay
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (01)
  • [5] A systematic review on intracranial aneurysm and hemorrhage detection using machine learning and deep learning techniques
    Ahmed, S. Nafees
    Prakasam, P.
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2023, 183 : 1 - 16
  • [6] COVID-19 Detection Empowered with Machine Learning and Deep Learning Techniques: A Systematic Review
    Rehman, Amir
    Iqbal, Muhammad Azhar
    Xing, Huanlai
    Ahmed, Irfan
    APPLIED SCIENCES-BASEL, 2021, 11 (08):
  • [7] A systematic review on machine learning and deep learning techniques in cancer survival prediction
    Deepa, P.
    Gunavathi, C.
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2022, 174 : 62 - 71
  • [8] Skin Diseases Classification with Machine Learning and Deep Learning Techniques: A Systematic Review
    Aboulmira, Amina
    Hrimech, Hamid
    Lachgar, Mohamed
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (10) : 1155 - 1173
  • [9] Machine learning for administrative health records: A systematic review of techniques and applications
    Caruana, Adrian
    Bandara, Madhushi
    Musial, Katarzyna
    Catchpoole, Daniel
    Kennedy, Paul J.
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2023, 144
  • [10] Cancer Detection Based on Medical Image Analysis with the Help of Machine Learning and Deep Learning Techniques: A Systematic Literature Review
    Sood, Tamanna
    Bhatia, Rajesh
    Khandnor, Padmavati
    CURRENT MEDICAL IMAGING, 2023, 19 (13) : 1487 - 1522