Building Behavior Simulation by Means of Artificial Neural Network in Summer Conditions

被引:22
作者
Buratti, Cinzia [1 ]
Lascaro, Elisa [1 ]
Palladino, Domenico [1 ]
Vergoni, Marco [1 ]
机构
[1] Univ Perugia, Dept Engn, I-06125 Perugia, Italy
关键词
Artificial Neural Network (ANN); building envelope behaviour; unsteady simulations; cooling conditions; ENERGY-CONSUMPTION; PERFORMANCE; OPTIMIZATION; PREDICTION; ENVELOPE; MODELS; SYSTEM; ROOF;
D O I
10.3390/su6085339
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Many studies in Italy showed that buildings are responsible for about 40% of total energy consumption, due to worsening performance of building envelope; in fact, a great number of Italian buildings were built before the 1970s and 80s. In particular, the energy consumptions for cooling are considerably increased with respect to the ones for heating. In order to reduce the cooling energy demand, ensuring indoor thermal comfort, a careful study on building envelope performance is necessary. Different dynamic software could be used in order to evaluate and to improve the building envelope during the cooling period, but much time and an accurate validation of the model are required. However, when a wide experimental data is available, the Artificial Neural Network (ANN) can be an alternative, simple and fast tool to use. In the present study, the indoor thermal conditions in many dwellings built in Umbria Region were investigated in order to evaluate the envelope performance. They were recently built and have very low energy consumptions. Based on the experimental data, a feed forward network was trained, in order to evaluate the different envelopes performance. As input parameters the outdoor climatic conditions and the thermal characteristics of building envelopes were set, while, as a target parameter, the indoor air temperature was provided. A good training of network was obtained with a high regression value (0.9625) and a very small error (0.007 degrees C) on air temperature. The network was also used to simulate the envelope behavior with new innovative glazing systems, in order to evaluate and to improve the energy performance.
引用
收藏
页码:5339 / 5353
页数:15
相关论文
共 28 条
[1]  
[Anonymous], 1996, Neural fuzzy systems
[2]   Evaluation of Green Buildings' Overall Performance through in Situ Monitoring and Simulations [J].
Asdrubali, Francesco ;
Buratti, Cinzia ;
Cotana, Franco ;
Baldinelli, Giorgio ;
Goretti, Michele ;
Moretti, Elisa ;
Baldassarri, Catia ;
Belloni, Elisa ;
Bianchi, Francesco ;
Rotili, Antonella ;
Vergoni, Marco ;
Palladino, Domenico ;
Bevilacqua, Daniele .
ENERGIES, 2013, 6 (12) :6525-6547
[3]   A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran [J].
Azadeh, A. ;
Ghaderi, S. F. ;
Sohrabkhani, S. .
ENERGY POLICY, 2008, 36 (07) :2637-2644
[4]   Evolutive Housing System: Refurbishment with new technologies and unsteady simulations of energy performance [J].
Buratti, C. ;
Belloni, E. ;
Palladino, D. .
ENERGY AND BUILDINGS, 2014, 74 :173-181
[5]   An original tool for checking energy performance and certification of buildings by means of Artificial Neural Networks [J].
Buratti, C. ;
Barbanera, M. ;
Palladino, D. .
APPLIED ENERGY, 2014, 120 :125-132
[6]   Experimental performance evaluation of aerogel glazing systems [J].
Buratti, C. ;
Moretti, E. .
APPLIED ENERGY, 2012, 97 :430-437
[7]   Glazing systems with silica aerogel for energy savings in buildings [J].
Buratti, C. ;
Moretti, E. .
APPLIED ENERGY, 2012, 98 :396-403
[8]  
Dayhoff J. E., 1990, Neural network architectures: an introduction
[9]  
Demuth H.B., 2013, NEURAL NETWORK TOOLB
[10]   Greek long-term energy consumption prediction using artificial neural networks [J].
Ekonomou, L. .
ENERGY, 2010, 35 (02) :512-517