On minimum entropy graph colorings

被引:0
作者
Cardinal, J [1 ]
Fiorini, S [1 ]
Van Assche, G [1 ]
机构
[1] Free Univ Brussels, B-1050 Brussels, Belgium
来源
2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS | 2004年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study properties of graph colorings that minimize the quantity of color information with respect to a given probability distribution on the vertices. The minimum entropy of any coloring is the chromatic entropy. Applications of the chromatic entropy are found in coding with side information and digital image partition coding. We show that minimum entropy colorings are hard to compute even if a minimum cardinality coloring is given, the distribution is uniform, and the graph is planar. We also consider the minimum number of colors in a minimum entropy coloring, and show that this number can be arbitrarily larger than the chromatic number, even for restricted families of uniformly weighted graphs.
引用
收藏
页码:43 / 43
页数:1
相关论文
共 6 条
  • [1] Efficient labeling procedures for image partition encoding
    Accame, M
    De Natale, FGB
    Granelli, F
    [J]. SIGNAL PROCESSING, 2000, 80 (06) : 1127 - 1131
  • [2] AGARWAL S, 2002, P IEEE INT C IM PROC
  • [3] Source coding and graph entropies
    Alon, N
    Orlitsky, A
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (05) : 1329 - 1339
  • [4] CARDINAL J, 517
  • [5] On zero-error source coding with decoder side information
    Koulgi, P
    Tuncel, E
    Regunathan, SL
    Rose, K
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (01) : 99 - 111
  • [6] ZHAO Q, 2003, P IEEE DAT COMPR C