TRANSVERSALS OF LONGEST PATHS AND CYCLES

被引:19
作者
Rautenbach, Dieter [1 ]
Sereni, Jean-Sebastien [2 ]
机构
[1] Univ Ulm, Inst Optimierung & Operat Res, D-89069 Ulm, Germany
[2] LORIA, CNRS, F-54506 Vandoeuvre Les Nancy, France
关键词
longest path; longest cycle; transversal; GRAPHS;
D O I
10.1137/130910658
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph of order n. Let lpt(G) be the minimum cardinality of a set X of vertices of G such that X intersects every longest path of G, and define lct(G) analogously for cycles instead of paths. We prove that lpt(G) <= inverted right perpendicularn/4 - n(2/3)/90inverted left perpendicular if G is connected, and lct(G) <= inverted right perpendicularn/3 - n(2/3)/36inverted left perpendicular if G is 2-connected. Our bound on lct(G) improves an earlier result of Thomassen. Furthermore, we prove upper bounds on lpt(G) for planar graphs and graphs of bounded tree-width.
引用
收藏
页码:335 / 341
页数:7
相关论文
共 14 条
[11]  
THOMASSEN C, 1978, LECT NOTES MATH, V642, P557
[12]  
VOSS H.-J., 1991, MATH APPL E EUROPEAN, V49
[13]   LONGEST PATHS AND CIRCUITS IN GRAPHS [J].
ZAMFIRESCU, T .
MATHEMATICA SCANDINAVICA, 1976, 38 (02) :211-239
[14]  
Zamfirescu T., 2001, Analele Univ. Craiova Ser. Mat. Inform, V28, P1