TRANSVERSALS OF LONGEST PATHS AND CYCLES

被引:19
作者
Rautenbach, Dieter [1 ]
Sereni, Jean-Sebastien [2 ]
机构
[1] Univ Ulm, Inst Optimierung & Operat Res, D-89069 Ulm, Germany
[2] LORIA, CNRS, F-54506 Vandoeuvre Les Nancy, France
关键词
longest path; longest cycle; transversal; GRAPHS;
D O I
10.1137/130910658
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph of order n. Let lpt(G) be the minimum cardinality of a set X of vertices of G such that X intersects every longest path of G, and define lct(G) analogously for cycles instead of paths. We prove that lpt(G) <= inverted right perpendicularn/4 - n(2/3)/90inverted left perpendicular if G is connected, and lct(G) <= inverted right perpendicularn/3 - n(2/3)/36inverted left perpendicular if G is 2-connected. Our bound on lct(G) improves an earlier result of Thomassen. Furthermore, we prove upper bounds on lpt(G) for planar graphs and graphs of bounded tree-width.
引用
收藏
页码:335 / 341
页数:7
相关论文
共 14 条
  • [1] Longest paths in circular arc graphs
    Balister, PN
    Györi, E
    Lehel, J
    Schelp, RH
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2004, 13 (03) : 311 - 317
  • [2] GALLAI T., 1966, P C HELD TIH HUNG, P362
  • [3] Golumbic M.C., 2004, ANN DISCRETE MATH, V57
  • [4] Exact numbers of longest cycles with empty intersection
    Jendrol, S
    Skupien, Z
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1997, 18 (05) : 575 - 578
  • [5] JOOS F., LONGEST PATHS UNPUB
  • [6] Konig D., 1931, Mat. Lapok, P116
  • [7] APPLICATIONS OF A PLANAR SEPARATOR THEOREM
    LIPTON, RJ
    TARJAN, RE
    [J]. SIAM JOURNAL ON COMPUTING, 1980, 9 (03) : 615 - 627
  • [8] Reed B. A., 1997, LONDON MATH SOC LECT, V241, P87
  • [9] Intersecting longest paths and longest cycles: A survey
    Shabbir, Ayesha
    Zamfirescu, Carol T.
    Zamfirescu, Tudor I.
    [J]. ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2013, 1 (01) : 56 - 76
  • [10] Skupien Z., 1996, COMB PROBAB COMPUT, V5, P429