Fractal dimension of random attractors for stochastic non-autonomous reaction-diffusion equations

被引:24
作者
Zhou, Shengfan [1 ]
Tian, Yongxiao [1 ]
Wang, Zhaojuan [2 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] Huaiyin Normal Univ, Sch Math Sci, Huaian 223300, Peoples R China
基金
浙江省自然科学基金; 中国国家自然科学基金;
关键词
Stochastic reaction-diffusion equation; Random attractor; Multiplicative white noise; Fractal dimension; Random dynamical system; Additive white noise; MULTIPLICATIVE NOISE; LIMITING DYNAMICS; WAVE-EQUATIONS; SYSTEMS;
D O I
10.1016/j.amc.2015.12.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first give some conditions for bounding the fractal dimension of a random invariant set for a non-autonomous random dynamical system on a separable Banach space. Then we apply these conditions to prove the finiteness of fractal dimension of the random attractors for stochastic reaction-diffusion equations with multiplicative white noise and additive white noise. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:80 / 95
页数:16
相关论文
共 43 条
  • [1] [Anonymous], 1992, Studies in Mathematics and its Applications
  • [2] [Anonymous], 2012, Infinite-dimensional dynamical systems in mechanics and physics, DOI 10.1007/978-1-4684-0313-8
  • [3] Arnold L., 1998, Random Dynamical Systems
  • [4] RECENT DEVELOPMENTS IN DYNAMICAL SYSTEMS: THREE PERSPECTIVES
    Balibrea, F.
    Caraballo, T.
    Kloeden, P. E.
    Valero, J.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (09): : 2591 - 2636
  • [5] Barnsley MF., 2014, Fractals Everywhere
  • [6] Random attractors for stochastic reaction-diffusion equations on unbounded domains
    Bates, Peter W.
    Lu, Kening
    Wang, Bixiang
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (02) : 845 - 869
  • [7] Caraballo T, 2000, DISCRET CONTIN DYN S, V6, P875
  • [8] Exponentially stable stationary solutions for stochastic evolution equations and their perturbation
    Caraballo, T
    Kloeden, PE
    Schmalfuss, B
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2004, 50 (03) : 183 - 207
  • [9] The effect of noise on the Chafee-Infante equation: A nonlinear case study
    Caraballo, Tomas
    Crauel, Hans
    Langa, Jose A.
    Robinson, James C.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (02) : 373 - 382
  • [10] CHEPYZHOV VV, 2002, AM MATH SOC C PUBLIC