A genome-wide screening in Saccharomyces cerevisiae for genes that confer resistance to the anticancer agent cisplatin

被引:35
|
作者
Burger, H
Capello, A
Schenk, PW
Stoter, G
Brouwer, J
Nooter, K [1 ]
机构
[1] Univ Rotterdam Hosp, Josephine Nefkens Inst, Dept Med Oncol, Rotterdam, Netherlands
[2] Leiden Univ, Med Ctr, Dept Mol Genet, Leiden, Netherlands
关键词
cisplatin; anticancer agent; drug resistance; DNA repair; Saccharomyces cerevisiae; PDE2; PKA;
D O I
10.1006/bbrc.2000.2361
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cisplatin is a potent DNA-damaging agent that has demonstrated anticancer activities against several tumors. However, manifestation of cellular resistance is a major obstacle in anticancer therapy that severely limits the curative potential of cisplatin. Therefore, understanding the molecular basis of cisplatin resistance could significantly improve the clinical efficacy of this anticancer agent. Here, we employed Saccharomyces cerevisiae as a model organism to study cisplatin resistance mechanisms and describe a one-step cisplatin selection to identify and characterize novel cisplatin resistance genes. Screening a multicopy yeast genomic library enabled us to isolate several yeast clones for which we could confirm that the cisplatin resistance phenotype was linked to the introduced fragment. In a first attempt, a number of open reading frames could be identified. Among these genes, PDE2 and ZDS2 were repeatedly identified as genes whose overexpression confers cellular resistance to cisplatin, PDE2, encoding cAMP-phosphodiesterase 2, is of particular interest because the overexpression of this yeast gene is known to induce cisplatin resistance in mammalian cells as well, providing proof of the principle of our experimental approach, In addition, the identification of PDE2 shows that our yeast screening system can directly be informative for drug resistance in mammalian cells. (C) 2000 Academic Press.
引用
收藏
页码:767 / 774
页数:8
相关论文
共 50 条
  • [1] Genome-wide screen identifies genes whose inactivation confer resistance to cisplatin in Saccharomyces cerevisiae
    Huang, RY
    Eddy, M
    Vujcic, M
    Kowalski, D
    CANCER RESEARCH, 2005, 65 (13) : 5890 - 5897
  • [2] Genome-wide identification of genes whose disruption confer resistance to arsenic in Saccharomyces cerevisiae
    Du Li
    Zhang Xin-Yu
    Yu Yong
    Chen Jing-Si
    Liu Yan
    Xia Yong-Jing
    Liu Xiang-Jun
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2007, 34 (10) : 1072 - 1079
  • [3] Genome-Wide Screening of Saccharomyces cerevisiae Genes Regulated by Vanillin
    Park, Eun-Hee
    Kim, Myoung-Dong
    JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 25 (01) : 50 - 56
  • [4] A Genome-Wide Screening in Saccharomyces cerevisiae for Suppressor Genes of MTM1
    Wang Juan
    Zhang Min-Jie
    Zeng Ya-Xue
    Cai Ying
    Zhou Bing
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2010, 37 (01) : 42 - 48
  • [5] Genome-wide screening of aluminum tolerance in Saccharomyces cerevisiae
    Kakimoto, M
    Kobayashi, A
    Fukuda, R
    Ono, Y
    Ohta, A
    Yoshimura, E
    BIOMETALS, 2005, 18 (05) : 467 - 474
  • [6] Genome-Wide Screening of Aluminum Tolerance in Saccharomyces cerevisiae
    Masayuki Kakimoto
    Atsushi Kobayashi
    Ryouichi Fukuda
    Yasuke Ono
    Akinori Ohta
    Etsuro Yoshimura
    Biometals, 2005, 18 : 467 - 474
  • [7] Genome-wide screening of Saccharomyces cerevisiae to identify genes required for antibiotic insusceptibility of eukaryotes
    Blackburn, AS
    Avery, SV
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2003, 47 (02) : 676 - 681
  • [8] Genome-Wide Screening of Oxidizing Agent Resistance Genes in Escherichia coli
    Chen, Hao
    Wilson, Jessica
    Ercanbrack, Carson
    Smith, Hannah
    Gan, Qinglei
    Fan, Chenguang
    ANTIOXIDANTS, 2021, 10 (06)
  • [9] Genome-wide screen of desiccation essential genes in Saccharomyces cerevisiae
    Manning, ML
    Potts, M
    Helm, R
    FASEB JOURNAL, 2006, 20 (04): : A520 - A520
  • [10] Mutator genes for suppression of gross chromosomal rearrangements identified by a genome-wide screening in Saccharomyces cerevisiae
    Smith, S
    Hwang, JY
    Banerjee, S
    Majeed, A
    Gupta, A
    Myung, K
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (24) : 9039 - 9044