A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress

被引:37
作者
Dong, Shaoyun [1 ]
Zhang, Joshua [1 ]
Beckles, Diane M. [1 ]
机构
[1] Univ Calif Davis, Dept Plant Sci, One Shield Ave, Davis, CA 95616 USA
关键词
WATER-DEFICIT; CARBOHYDRATE-METABOLISM; FREEZING TOLERANCE; GENE-EXPRESSION; SOLUBLE SUGARS; ABSCISIC-ACID; CARBON; PLANTS; DEGRADATION; GROWTH;
D O I
10.1038/s41598-018-27610-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Plant carbon status is optimized for normal growth but is affected by abiotic stress. Here, we used C-14-labeling to provide the first holistic picture of carbon use changes during short-term osmotic, salinity, and cold stress in Arabidopsis thaliana. This could inform on the early mechanisms plants use to survive adverse environment, which is important for efficient agricultural production. We found that carbon allocation from source to sinks, and partitioning into major metabolite pools in the source leaf, sink leaves and roots showed both conserved and divergent responses to the stresses examined. Carbohydrates changed under all abiotic stresses applied; plants re-partitioned C-14 to maintain sugar levels under stress, primarily by reducing C-14 into the storage compounds in the source leaf, and decreasing C-14 into the pools used for growth processes in the roots. Salinity and cold increased C-14-flux into protein, but as the stress progressed, protein degradation increased to produce amino acids, presumably for osmoprotection. Our work also emphasized that stress regulated the carbon channeled into starch, and its metabolic turnover. These stress-induced changes in starch metabolism and sugar export in the source were partly accompanied by transcriptional alteration in the T6P/SnRK1 regulatory pathway that are normally activated by carbon starvation.
引用
收藏
页数:12
相关论文
共 76 条
[1]   Protein degradation - an alternative respiratory substrate for stressed plants [J].
Araujo, Wagner L. ;
Tohge, Takayuki ;
Ishizaki, Kimitsune ;
Leaver, Christopher J. ;
Fernie, Alisdair R. .
TRENDS IN PLANT SCIENCE, 2011, 16 (09) :489-498
[2]   The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signaling [J].
Avonce, N ;
Leyman, B ;
Mascorro-Gallardo, JO ;
Van Dijck, P ;
Thevelein, JM ;
Iturriaga, G .
PLANT PHYSIOLOGY, 2004, 136 (03) :3649-3659
[3]   A central integrator of transcription networks in plant stress and energy signalling [J].
Baena-Gonzalez, Elena ;
Rolland, Filip ;
Thevelein, Johan M. ;
Sheen, Jen .
NATURE, 2007, 448 (7156) :938-U10
[4]   SWEET as Sugar: New Sucrose Effluxers in Plants [J].
Baker, R. Frank ;
Leach, Kristen A. ;
Braun, David M. .
MOLECULAR PLANT, 2012, 5 (04) :766-768
[5]  
Balibrea ME, 2000, PHYSIOL PLANTARUM, V110, P503, DOI 10.1111/j.1399-3054.2000.1100412.x
[6]   STUDY OF GLUCOSE STARVATION IN EXCISED MAIZE ROOT-TIPS [J].
BROUQUISSE, R ;
JAMES, F ;
RAYMOND, P ;
PRADET, A .
PLANT PHYSIOLOGY, 1991, 96 (02) :619-626
[7]  
Ceusters N., 2016, Progress in Botany, V78, P145, DOI DOI 10.1007/124_2016_1
[8]   Molecular regulation of starch accumulation in rice seedling leaves in response to salt stress [J].
Chen, Huai-Ju ;
Chen, Jia-Yi ;
Wang, Shu-Jen .
ACTA PHYSIOLOGIAE PLANTARUM, 2008, 30 (02) :135-142
[9]   Sucrose Efflux Mediated by SWEET Proteins as a Key Step for Phloem Transport [J].
Chen, Li-Qing ;
Qu, Xiao-Qing ;
Hou, Bi-Huei ;
Sosso, Davide ;
Osorio, Sonia ;
Fernie, Alisdair R. ;
Frommer, Wolf B. .
SCIENCE, 2012, 335 (6065) :207-211
[10]   Sugar transporters for intercellular exchange and nutrition of pathogens [J].
Chen, Li-Qing ;
Hou, Bi-Huei ;
Lalonde, Sylvie ;
Takanaga, Hitomi ;
Hartung, Mara L. ;
Qu, Xiao-Qing ;
Guo, Woei-Jiun ;
Kim, Jung-Gun ;
Underwood, William ;
Chaudhuri, Bhavna ;
Chermak, Diane ;
Antony, Ginny ;
White, Frank F. ;
Somerville, Shauna C. ;
Mudgett, Mary Beth ;
Frommer, Wolf B. .
NATURE, 2010, 468 (7323) :527-U199