Variational principles and eigenvalue estimates for unbounded block operator matrices and applications

被引:18
作者
Kraus, M
Langer, M
Tretter, C
机构
[1] Univ Bremen, FB Math 2, D-28359 Bremen, Germany
[2] Univ Regensburg, Fak Math, D-93040 Regensburg, Germany
[3] Vienna Tech Univ, Inst Anal & Sci Comp, A-1040 Vienna, Austria
基金
英国工程与自然科学研究理事会;
关键词
variational principle for eigenvalues; estimates for eigenvalues; asymptotic distribution of eigenvalues; quadratic numerical range; magnetohydrodynamics; warped product of spin manifolds; Dirac operator;
D O I
10.1016/j.cam.2004.01.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish variational principles, eigenvalue estimates and asymptotic formulae for eigenvalues of three different classes of unbounded block operator matrices. The results allow to characterise eigenvalues that are not necessarily located at the boundary of the spectrum. Applications to an example from magnetohydrodynamics and to Dirac operators on certain manifolds are given. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:311 / 334
页数:24
相关论文
共 19 条
[1]   THE ESSENTIAL SPECTRUM OF SOME MATRIX OPERATORS [J].
ATKINSON, FV ;
LANGER, H ;
MENNICKEN, R ;
SHKALIKOV, AA .
MATHEMATISCHE NACHRICHTEN, 1994, 167 :5-20
[2]  
Dolbeault J, 2000, J FUNCT ANAL, V174, P208, DOI 10.1006/jfan.2000.3542
[3]  
ESCHWE D, IN PRESS INTEGRAL EQ
[4]  
Friedrich T, 1997, DIRAC OPERATOREN RIE
[5]   A minimax principle for the eigenvalues in spectral gaps [J].
Griesemer, M ;
Siedentop, H .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 60 :490-500
[6]  
Hitchin N., 1974, J. Differ. Geom., V9, P435, DOI [/10.4310/jdg/1214432419, DOI 10.4310/JDG/1214432419]
[7]  
Kato T., 1976, PERTURBATION THEORY
[9]   A new method for eigenvalue estimates for Dirac operators on certain manifolds with Sk-symmetry [J].
Kraus, M ;
Tretter, C .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2003, 19 (01) :1-14
[10]   Variational principles for eigenvalues of block operator matrices [J].
Langer, H ;
Langer, M ;
Tretter, C .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2002, 51 (06) :1427-1459