A Conserved Suppressor Mutation in a Tryptophan Auxotroph Results in Dysregulation of Pseudomonas Quinolone Signal Synthesis

被引:17
作者
Knoten, Claire A. [1 ]
Wells, Greg [1 ]
Coleman, James P. [1 ]
Pesci, Everett C. [1 ]
机构
[1] E Carolina Univ, Brody Sch Med, Dept Microbiol & Immunol, Greenville, NC 27858 USA
关键词
ANTHRANILATE SYNTHASE; ESCHERICHIA-COLI; DNA-SEQUENCES; AERUGINOSA; GENES; VIRULENCE; CELL; IDENTIFICATION; INFECTION; PATHWAY;
D O I
10.1128/JB.01635-14
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Pseudomonas aeruginosa is a common nosocomial pathogen that relies on three cell-to-cell signals to regulate multiple virulence factors. The Pseudomonas quinolone signal (PQS; 2-heptyl-3-hydroxy-4-quinolone) is one of these signals, and it is known to be important for P. aeruginosa pathogenesis. PQS is synthesized in a multistep reaction that condenses anthranilate and a fatty acid. In P. aeruginosa, anthranilate is produced via the kynurenine pathway and two separate anthranilate synthases, TrpEG and PhnAB, the latter of which is important for PQS synthesis. Others have previously shown that a P. aeruginosa tryptophan auxotroph could grow on tryptophan-depleted medium with a frequency of 10(-5) to 10(-6). These revertants produced more pyocyanin and had increased levels of phnA transcript. In this study, we constructed similar tryptophan auxotroph revertants and found that the reversion resulted from a synonymous G-to-A nucleotide mutation within pqsC. This change resulted in increased pyocyanin and decreased PQS, along with an increase in the level of the pqsD, pqsE, and phnAB transcripts. Reporter fusion and reverse transcriptase PCR studies indicated that a novel transcript containing pqsD, pqsE, and phnAB occurs in these revertants, and quantitative real-time PCR experiments suggested that the same transcript appears in the wild-type strain under nutrient-limiting conditions. These results imply that the PQS biosynthetic operon can produce an internal transcript that increases anthranilate production and greatly elevates the expression of the PQS signal response protein PqsE. This suggests a novel mechanism to ensure the production of both anthranilate and PQS-controlled virulence factors.
引用
收藏
页码:2413 / 2422
页数:10
相关论文
共 53 条
[1]   Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis [J].
Burns, JL ;
Gibson, RL ;
McNamara, S ;
Yim, D ;
Emerson, J ;
Rosenfeld, M ;
Hiatt, P ;
McCcoy, K ;
Castile, R ;
Smith, AL ;
Ramsey, BW .
JOURNAL OF INFECTIOUS DISEASES, 2001, 183 (03) :444-452
[2]   A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism [J].
Cao, H ;
Krishnan, G ;
Goumnerov, B ;
Tsongalis, J ;
Tompkins, R ;
Rahme, LG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (25) :14613-14618
[3]   A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells:: Application for DNA fragment transfer between chromosomes and plasmid transformation [J].
Choi, KH ;
Kumar, A ;
Schweizer, HP .
JOURNAL OF MICROBIOLOGICAL METHODS, 2006, 64 (03) :391-397
[4]   Pseudomonas aeruginosa PqsA is an anthranilate-coenzyme a ligase [J].
Coleman, James P. ;
Hudson, L. Lynn ;
McKnight, Susan L. ;
Farrow, John M., III ;
Calfee, M. Worth ;
Lindsey, Claire A. ;
Pesci, Everett C. .
JOURNAL OF BACTERIOLOGY, 2008, 190 (04) :1247-1255
[5]   A bacterial cell to cell signal in the lungs of cystic fibrosis patients [J].
Collier, DN ;
Anderson, L ;
McKnight, SL ;
Noah, TL ;
Knowles, M ;
Boucher, R ;
Schwab, U ;
Gilligan, P ;
Pesci, EC .
FEMS MICROBIOLOGY LETTERS, 2002, 215 (01) :41-46
[6]   The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation:: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones [J].
Déziel, E ;
Gopalan, S ;
Tampakaki, AP ;
Lépine, F ;
Padfield, KE ;
Saucier, M ;
Xiao, GP ;
Rahme, LG .
MOLECULAR MICROBIOLOGY, 2005, 55 (04) :998-1014
[7]   Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication [J].
Déziel, E ;
Lépine, F ;
Milot, S ;
He, JX ;
Mindrinos, MN ;
Tompkins, RG ;
Rahme, LG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (05) :1339-1344
[8]   4-Quinolone signalling in Pseudomonas aeruginosa:: Old molecules, new perspectives [J].
Diggle, SP ;
Cornelis, P ;
Williams, P ;
Cámara, M .
INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY, 2006, 296 (2-3) :83-91
[9]   The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR [J].
Diggle, SP ;
Winzer, K ;
Chhabra, SR ;
Chhabra, SR ;
Worrall, KE ;
Cámara, M ;
Williams, P .
MOLECULAR MICROBIOLOGY, 2003, 50 (01) :29-43
[10]   The Pseudomonas aeruginosa Transcriptome in Planktonic Cultures and Static Biofilms Using RNA Sequencing [J].
Doetsch, Andreas ;
Eckweiler, Denitsa ;
Schniederjans, Monika ;
Zimmermann, Ariane ;
Jensen, Vanessa ;
Scharfe, Maren ;
Geffers, Robert ;
Haeussler, Susanne .
PLOS ONE, 2012, 7 (02)