Area-preserving mean curvature flow of rotationally symmetric hypersurfaces with free boundaries

被引:1
作者
Wang KunBo [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
关键词
area-preserving mean curvature flow; symmetric hypersurfaces; free boundary; SURFACES;
D O I
10.1007/s11425-015-5036-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the area-preserving mean curvature flow with free Neumann boundaries. We show that for a rotationally symmetric n-dimensional hypersurface in a"e (n+1) between two parallel hyperplanes will converge to a cylinder with the same area under this flow. We use the geometric properties and the maximal principle to obtain gradient and curvature estimates, leading to long-time existence of the flow and convergence to a constant mean curvature surface.
引用
收藏
页码:493 / 502
页数:10
相关论文
共 22 条
[1]  
Andrews B, 2001, INDIANA U MATH J, V50, P783
[2]   Volume-preserving mean curvature flow of rotationally symmetric surfaces [J].
Athanassenas, M .
COMMENTARII MATHEMATICI HELVETICI, 1997, 72 (01) :52-66
[3]  
ATHANASSENAS M, 1987, J REINE ANGEW MATH, V377, P97
[4]   A FREE-BOUNDARY PROBLEM FOR CAPILLARY SURFACES [J].
ATHANASSENAS, M .
MANUSCRIPTA MATHEMATICA, 1992, 76 (01) :5-19
[5]  
Athanassenas M, 2003, CAL VAR, V17, P52
[6]  
Brakle K A, 1978, MOTION SURFACE ITS M
[7]  
Buckland JA, 2005, J REINE ANGEW MATH, V586, P71
[8]  
Delaunay C., 1841, J. Math. Pures Appl, V6, P309
[9]   INTERIOR ESTIMATES FOR HYPERSURFACES MOVING BY MEAN-CURVATURE [J].
ECKER, K ;
HUISKEN, G .
INVENTIONES MATHEMATICAE, 1991, 105 (03) :547-569
[10]  
HAMILTON RS, 1982, J DIFFER GEOM, V17, P255