Multiple nontrivial solutions for semilinear elliptic problems

被引:1
作者
Barletta, Giuseppina [1 ]
Papageorgiou, Nikolaos S. [2 ]
机构
[1] Univ Reggio Calabria, Dipartimento Patrimonio Architetton & Urbanist, Fac Architettura, I-89124 Reggio Di Calabria, Italy
[2] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
关键词
Multiple solutions; Solutions of constant sign; Nodal solutions; Upper and lower solutions; Truncations; Critical point theory; Critical groups; Poincare-Hopf formula; BOUNDARY-VALUE-PROBLEMS; SIGN-CHANGING SOLUTIONS; POSITIVE SOLUTIONS; SOLUTIONS THEOREMS; EQUATIONS; RESONANCE; SPACES;
D O I
10.1016/j.na.2009.03.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of multiple constant sign and nodal (sign-changing) solutions for semilinear elliptic equations. Our approach is based on a combination of variational techniques using critical point theory, of the method of upper-lower solutions and of Morse theory (critical groups). We prove several multiplicity results. Our analytical framework incorporates both coercive and superlinear parametric problems. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4321 / 4345
页数:25
相关论文
共 28 条
[1]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[2]   Multiplicity results for some nonlinear elliptic equations [J].
Ambrosetti, A ;
Azorero, JG ;
Peral, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 137 (01) :219-242
[3]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[4]   On the Morse indices of sign changing solutions of nonlinear elliptic problems [J].
Bartsch, T ;
Chang, KC ;
Wang, ZQ .
MATHEMATISCHE ZEITSCHRIFT, 2000, 233 (04) :655-677
[5]   Nodal solutions of a p-Laplacian equation [J].
Bartsch, T ;
Liu, ZL ;
Weth, T .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 :129-152
[6]   Critical point theory for asymptotically quadratic functionals and applications to problems with resonance [J].
Bartsch, T ;
Li, SJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (03) :419-441
[7]  
BREZIS H, 1993, CR ACAD SCI I-MATH, V317, P465
[8]   MULTIPLE POSITIVE SOLUTIONS FOR A CLASS OF NONLINEAR BOUNDARY-VALUE PROBLEMS [J].
BROWN, KJ ;
BUDIN, H .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1977, 60 (02) :329-338
[9]   MULTIPLE SOLUTIONS FOR A NONLINEAR DIRICHLET PROBLEM [J].
CASTRO, A ;
COSSIO, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (06) :1554-1561
[10]  
Chang K.-c., 1993, Progress in Nonlinear Differential Equations and their Applications, V6