Time-varying fault feature extraction of rolling bearing via time-frequency sparsity

被引:8
作者
Yi, Cancan [1 ,2 ]
Qin, Jiaqi [1 ,2 ]
Huang, Tao [1 ,2 ]
Jin, Zhangmin [3 ]
机构
[1] Wuhan Univ Sci & Technol, Key Lab Met Equipment & Control Technol, Minist Educ, Wuhan 430081, Peoples R China
[2] Wuhan Univ Sci & Technol, Hubei Key Lab Mech Transmiss & Mfg Engn, Wuhan 430081, Peoples R China
[3] Wenzhou Acad Special Equipment Sci, Wenzhou 325000, Peoples R China
基金
中国国家自然科学基金;
关键词
second-order short-time Fourier transform; generalized minimax concave penalty; convex optimization; time-varying feature extraction; fault diagnosis; SYNCHROSQUEEZING TRANSFORM; DIAGNOSIS; DECOMPOSITION; SIGNALS; RECONSTRUCTION;
D O I
10.1088/1361-6501/abb50f
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The joint time-frequency (TF) distribution is a critical method of describing the instantaneous frequency that changes with time. To eliminate the errors caused by strong modulation and noise interference in the process of time-varying fault feature extraction, this paper proposes a novel approach called second-order time-frequency sparse representation (SOTFSR), which is based on convex optimization in the domain of second-order short-time Fourier transform (SOSTFT) where the TF feature manifests itself as a relative sparsity. According to the second-order local estimation of the phase function, SOSTFT can provide a sparse TF coefficient in the short-time Fourier transform (STFT) domain. To obtain the optimal TF coefficient matrix from noisy observations, it is innovatively formulated as a typical convex optimization problem. Subsequently, a multivariate generalized minimax concave penalty is employed to maintain the convexity of the least-squares cost function to be minimized. The aim of the proposed SOTFSR is to obtain the optimal STFT coefficient in the TF domain for extraction of time-varying features and for perfect signal reconstruction. To verify the superiority of the proposed method, we collect the multi-component simulation signals and the signals under variable speed from a rolling bearing with an inner ring fault. The experimental results show that the proposed method can effectively extract the time-varying fault characteristics.
引用
收藏
页数:12
相关论文
共 36 条
[1]   Observation of Gravitational Waves from a Binary Black Hole Merger [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allocca, A. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Arain, M. A. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. ;
Baker, P. T. ;
Baldaccini, F. ;
Ballardin, G. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barone, F. .
PHYSICAL REVIEW LETTERS, 2016, 116 (06)
[2]   Feedback on the Surveillance 8 challenge: Vibration-based diagnosis of a Safran aircraft engine [J].
Antoni, Jerome ;
Griffaton, Julien ;
Andre, Hugo ;
Avendano-Valencia, Luis David ;
Bonnardot, Frederic ;
Cardona-Morales, Oscar ;
Castellanos-Dominguez, German ;
Daga, Alessandro Paolo ;
Leclere, Quentin ;
Molina Vicuna, Cristian ;
Quezada Acuna, David ;
Ompusunggu, Agusmian Partogi ;
Sierra-Alonso, Edgar F. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 97 :112-144
[3]   A Fast and Robust Spectrogram Reassignment Method [J].
Bruni, Vittoria ;
Tartaglione, Michela ;
Vitulano, Domenico .
MATHEMATICS, 2019, 7 (04)
[4]   Sparsity-enhanced signal decomposition via generalized minimax-concave penalty for gearbox fault diagnosis [J].
Cai, Gaigai ;
Selesnick, Ivan W. ;
Wang, Shibin ;
Dai, Weiwei ;
Zhu, Zhongkui .
JOURNAL OF SOUND AND VIBRATION, 2018, 432 :213-234
[5]   Accurate evolutions of orbiting black-hole binaries without excision [J].
Campanelli, M ;
Lousto, CO ;
Marronetti, P ;
Zlochower, Y .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[6]   Characterization of signals by the ridges of their wavelet transforms [J].
Carmona, RA ;
Hwang, WL ;
Torresani, B .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (10) :2586-2590
[7]   High-accuracy fault feature extraction for rolling bearings under time-varying speed conditions using an iterative envelope-tracking filter [J].
Chen, Shiqian ;
Du, Minggang ;
Peng, Zhike ;
Liang, Ming ;
He, Qingbo ;
Zhang, Wenming .
JOURNAL OF SOUND AND VIBRATION, 2019, 448 :211-229
[8]   Separation of Overlapped Non-Stationary Signals by Ridge Path Regrouping and Intrinsic Chirp Component Decomposition [J].
Chen, Shiqian ;
Dong, Xingjian ;
Xing, Guanpei ;
Peng, Zhike ;
Zhang, Wenming ;
Meng, Guang .
IEEE SENSORS JOURNAL, 2017, 17 (18) :5994-6005
[9]   Intrinsic chirp component decomposition by using Fourier Series representation [J].
Chen, Shiqian ;
Peng, Zhike ;
Yang, Yang ;
Dong, Xingjian ;
Zhang, Wenming .
SIGNAL PROCESSING, 2017, 137 :319-327
[10]   Time-Frequency Filtering Based on Model Fitting in the Time-Frequency Plane [J].
Colominas, Marcelo A. ;
Meignen, Sylvain ;
Duong-Hung Pham .
IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (05) :660-664