Design and Testing of a Custom Melanoma Next Generation Sequencing Panel for Analysis of Circulating Tumor DNA

被引:30
作者
Diefenbach, Russell J. [1 ,2 ]
Lee, Jenny H. [1 ,2 ]
Menzies, Alexander M. [2 ,3 ,4 ]
Carlino, Matteo S. [2 ,3 ,5 ]
Long, Georgina, V [2 ,3 ,4 ,6 ]
Saw, Robyn P. M. [2 ,3 ,7 ]
Howle, Julie R. [2 ,3 ,5 ]
Spillane, Andrew J. [2 ,3 ,8 ]
Scolyer, Richard A. [2 ,3 ,6 ,9 ,10 ]
Kefford, Richard F. [2 ,3 ,11 ]
Rizos, Helen [1 ,2 ]
机构
[1] Macquarie Univ, Fac Med, Dept Biomed Sci, Sydney, NSW 2109, Australia
[2] Univ Sydney, Melanoma Inst Australia, Sydney, NSW 2065, Australia
[3] Univ Sydney, Sydney Med Sch, Sydney, NSW 2006, Australia
[4] Royal North Shore Hosp, Northern Sydney Canc Ctr, Dept Med Oncol, Sydney, NSW 2065, Australia
[5] Westmead & Blacktown Hosp, Crown Princess Mary Canc Ctr, Sydney, NSW 2145, Australia
[6] Univ Sydney, Charles Perkins Ctr, Sydney, NSW 2006, Australia
[7] Royal Prince Alfred Hosp, Dept Melanoma & Surg Oncol, Sydney, NSW 2050, Australia
[8] Royal North Shore Hosp, Breast & Melanoma Surg Dept, Div Surg, Sydney, NSW 2065, Australia
[9] Royal Prince Alfred Hosp, Dept Tissue Pathol & Diagnost Oncol, Sydney, NSW 2050, Australia
[10] New South Wales Hlth Pathol, Sydney, NSW 2050, Australia
[11] Macquarie Univ, Fac Med Hlth & Human Sci, Dept Clin Med, Sydney, NSW 2109, Australia
基金
英国医学研究理事会;
关键词
Melanoma; circulating tumor DNA; targeted sequencing; custom panel; TERT PROMOTER MUTATIONS; CLONAL HEMATOPOIESIS; PREDICTS SURVIVAL; BRAF; NRAS; AGE; HETEROGENEITY; FEASIBILITY; BRAF(V600E); CTDNA;
D O I
10.3390/cancers12082228
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Detection of melanoma-associated mutations using circulating tumor DNA (ctDNA) from plasma is a potential alternative to using genomic DNA from invasive tissue biopsies. In this study, we developed a custom melanoma next-generation sequencing (NGS) panel which includes 123 amplicons in 30 genes covering driver and targetable mutations and alterations associated with treatment resistance. Analysis of a cohort of 74 stage III and IV treatment-naive melanoma patients revealed that sensitivity of ctDNA detection was influenced by the amount of circulating-free DNA (cfDNA) input and stage of melanoma. At the recommended cfDNA input quantity of 20 ng (available in 28/74 patients), at least one cancer-associated mutation was detected in the ctDNA of 84% of stage IV patients and 47% of stage III patients with a limit of detection for mutant allele frequency (MAF) of 0.2%. This custom melanoma panel showed significant correlation with droplet digital PCR (ddPCR) and provided a more comprehensive melanoma mutation profile. Our custom panel could be further optimized by replacing amplicons spanning theTERTpromoter, which did not perform well due to the high GC content. To increase the detection rate to 90% of stage IV melanoma and decrease the sensitivity to 0.1% MAF, we recommend increasing the volume of plasma to 8 mL to achieve minimal recommended cfDNA input and the refinement of poorly performing amplicons. Our panel can also be expanded to include new targetable and treatment resistance mutations to improve the tracking of treatment response and resistance in melanoma patients treated with systemic drug therapies.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 54 条
[1]   Genomic Classification of Cutaneous Melanoma [J].
Akbani, Rehan ;
Akdemir, Kadir C. ;
Aksoy, B. Arman ;
Albert, Monique ;
Ally, Adrian ;
Amin, Samirkumar B. ;
Arachchi, Harindra ;
Arora, Arshi ;
Auman, J. Todd ;
Ayala, Brenda ;
Baboud, Julien ;
Balasundaram, Miruna ;
Balu, Saianand ;
Barnabas, Nandita ;
Bartlett, John ;
Bartlett, Pam ;
Bastian, Boris C. ;
Baylin, Stephen B. ;
Behera, Madhusmita ;
Belyaev, Dmitry ;
Benz, Christopher ;
Bernard, Brady ;
Beroukhim, Rameen ;
Bir, Natalie ;
Black, Aaron D. ;
Bodenheimer, Tom ;
Boice, Lori ;
Boland, Genevieve M. ;
Bono, Riccardo ;
Bootwalla, Moiz S. ;
Bosenberg, Marcus ;
Bowen, Jay ;
Bowlby, Reanne ;
Bristow, Christopher A. ;
Brockway-Lunardi, Laura ;
Brooks, Denise ;
Brzezinski, Jakub ;
Bshara, Wiam ;
Buda, Elizabeth ;
Burns, William R. ;
Butterfield, Yaron S. N. ;
Button, Michael ;
Calderone, Tiffany ;
Cappellini, Giancarlo Antonini ;
Carter, Candace ;
Carter, Scott L. ;
Cherney, Lynn ;
Cherniack, Andrew D. ;
Chevalier, Aaron ;
Chin, Lynda .
CELL, 2015, 161 (07) :1681-1696
[2]   Recurrent inactivating RASA2 mutations in melanoma [J].
Arafeh, Rand ;
Qutob, Nouar ;
Emmanuel, Rafi ;
Keren-Paz, Alona ;
Madore, Jason ;
Elkahloun, Abdel ;
Wilmott, James S. ;
Gartner, Jared J. ;
Di Pizio, Antonella ;
Winograd-Katz, Sabina ;
Sindiri, Sivasish ;
Rotkopf, Ron ;
Dutton-Regester, Ken ;
Johansson, Peter ;
Pritchard, Antonia L. ;
Waddell, Nicola ;
Hill, Victoria K. ;
Lin, Jimmy C. ;
Hevroni, Yael ;
Rosenberg, Steven A. ;
Khan, Javed ;
Ben-Dor, Shifra ;
Niv, Masha Y. ;
Ulitsky, Igor ;
Mann, Graham J. ;
Scolyer, Richard A. ;
Hayward, Nicholas K. ;
Samuels, Yardena .
NATURE GENETICS, 2015, 47 (12) :1408-+
[3]   Technical progress in circulating tumor DNA analysis using next generation sequencing [J].
Bai, Yunfei ;
Wang, Zexin ;
Liu, Zhiyu ;
Liang, Geyu ;
Gu, Wanjun ;
Ge, Qinyu .
MOLECULAR AND CELLULAR PROBES, 2020, 49
[4]  
Bailey MH, 2018, CELL, V173, P371, DOI [10.1016/j.cell.2018.02.060, 10.1016/j.cell.2018.07.034]
[5]  
Bronkhorst Abel Jacobus, 2019, Biomol Detect Quantif, V17, P100087, DOI 10.1016/j.bdq.2019.100087
[6]   Locus-specific concordance of genomic alterations between tissue and plasma circulating tumor DNA in metastatic melanoma [J].
Calapre, Leslie ;
Giardina, Tindaro ;
Robinson, Cleo ;
Reid, Anna L. ;
Al-Ogaili, Zeyad ;
Pereira, Michelle R. ;
McEvoy, Ashleigh C. ;
Warburton, Lydia ;
Hayward, Nicholas K. ;
Khattak, Muhammad A. ;
Meniawy, Tarek M. ;
Millward, Michael ;
Amanuel, Benhur ;
Ziman, Melanie ;
Gray, Elin S. .
MOLECULAR ONCOLOGY, 2019, 13 (02) :171-184
[7]   The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data [J].
Cerami, Ethan ;
Gao, Jianjiong ;
Dogrusoz, Ugur ;
Gross, Benjamin E. ;
Sumer, Selcuk Onur ;
Aksoy, Buelent Arman ;
Jacobsen, Anders ;
Byrne, Caitlin J. ;
Heuer, Michael L. ;
Larsson, Erik ;
Antipin, Yevgeniy ;
Reva, Boris ;
Goldberg, Arthur P. ;
Sander, Chris ;
Schultz, Nikolaus .
CANCER DISCOVERY, 2012, 2 (05) :401-404
[8]   TERT, BRAF, and NRAS Mutational Heterogeneity between Paired Primary and Metastatic Melanoma Tumors [J].
Chang, Gregory A. ;
Wiggins, Jennifer M. ;
Corless, Broderick C. ;
Syeda, Mahrukh M. ;
Tadepalli, Jyothirmayee S. ;
Blake, Shria ;
Fleming, Nathaniel ;
Darvishian, Farbod ;
Pavlick, Anna ;
Berman, Russell ;
Shapiro, Richard ;
Shao, Yongzhao ;
Karlin-Neumann, George ;
Spittle, Cindy ;
Osman, Iman ;
Polsky, David .
JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2020, 140 (08) :1609-+
[9]   Human substance P receptor binding mode of the antagonist drug aprepitant by NMR and crystallography [J].
Chen, Shuanghong ;
Lu, Mengjie ;
Liu, Dongsheng ;
Yang, Lingyun ;
Yi, Cuiying ;
Ma, Limin ;
Zhang, Hui ;
Liu, Qing ;
Frimurer, Thomas M. ;
Wang, Ming-Wei ;
Schwartz, Thue W. ;
Stevens, Raymond C. ;
Wu, Beili ;
Wuthrich, Kurt ;
Zhao, Qiang .
NATURE COMMUNICATIONS, 2019, 10 (1)
[10]   Optimizing Amplification of the GC-Rich TERT Promoter Region Using 7-Deaza-dGTP for Droplet Digital PCR Quantification of TERT Promoter Mutations [J].
Colebatch, Andrew J. ;
Witkowski, Tom ;
Waring, Paul M. ;
McArthur, Grant A. ;
Wong, Stephen Q. ;
Dobrovic, Alexander .
CLINICAL CHEMISTRY, 2018, 64 (04) :745-747