PRIMARY EMITTER LOCALIZATION USING SMARTLY INITIALIZED METROPOLIS-HASTINGS ALGORITHM

被引:0
|
作者
Uereten, Suzan [1 ]
Yongacoglu, Abbas [1 ]
Petriu, Emil [1 ]
机构
[1] Univ Ottawa, Sch Elect Engn & Comp Sci, Ottawa, ON K1N 6N5, Canada
来源
2013 PROCEEDINGS OF THE 21ST EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO) | 2013年
关键词
Cognitive radio networks; interference map; primary emitter localization; Markov chain Monte Carlo;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The knowledge of the primary emitter location is important in cognitive radio networks as it is required to determine the exclusion region of the primary network. We show that interpolation based localization techniques do not provide accurate primary emitter localization; however they can provide significant complexity reduction when their estimates are used to initialize more accurate iterative localization techniques. In this paper, we generated interference maps using low complexity interpolation techniques and provided their coarse estimates to initialize a Metropolis-Hastings (MH) based localization algorithm. Our simulation results show that smart initialization of the MH algorithm eliminates tedious parameter tuning process and achieves significantly better localization performance than randomly initialized MH algorithm at a fraction of iterations.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] A history of the Metropolis-Hastings algorithm
    Hitchcock, DB
    AMERICAN STATISTICIAN, 2003, 57 (04): : 254 - 257
  • [2] UNDERSTANDING THE METROPOLIS-HASTINGS ALGORITHM
    CHIB, S
    GREENBERG, E
    AMERICAN STATISTICIAN, 1995, 49 (04): : 327 - 335
  • [3] The Implicit Metropolis-Hastings Algorithm
    Neklyudov, Kirill
    Egorov, Evgenii
    Vetrov, Dmitry
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [4] A Metropolis-Hastings Algorithm for Task Allocation
    Hamza, Doha
    Toonsi, Sarah
    Shamma, Jeff S.
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 4539 - 4545
  • [5] Maximal Couplings of the Metropolis-Hastings Algorithm
    O'Leary, John
    Wang, Guanyang
    Jacob, Pierre E.
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [6] Density estimation for the Metropolis-Hastings algorithm
    Sköld, M
    Roberts, GO
    SCANDINAVIAN JOURNAL OF STATISTICS, 2003, 30 (04) : 699 - 718
  • [7] Control variates for the Metropolis-Hastings algorithm
    Hammer, Hugo
    Tjelmeland, Hakon
    SCANDINAVIAN JOURNAL OF STATISTICS, 2008, 35 (03) : 400 - 414
  • [8] A geometric interpretation of the Metropolis-Hastings algorithm
    Billera, LJ
    Diaconis, P
    STATISTICAL SCIENCE, 2001, 16 (04) : 335 - 339
  • [9] A history of the Metropolis-Hastings algorithm - Comment
    Kotz, S
    Johnson, NL
    Read, CB
    Banks, DL
    AMERICAN STATISTICIAN, 2004, 58 (01): : 90 - 90
  • [10] Improving on the independent Metropolis-Hastings algorithm
    Atchadé, YF
    Perron, F
    STATISTICA SINICA, 2005, 15 (01) : 3 - 18