Computation of residence time in the simulation of pulsatile ventricular assist devices

被引:79
作者
Long, C. C. [2 ]
Esmaily-Moghadam, M. [2 ]
Marsden, A. L. [2 ]
Bazilevs, Y. [1 ]
机构
[1] Univ Calif San Diego, Dept Struct Engn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
关键词
PVAD; Residence time; FSI; Isogeometric analysis; Biomechanics; FEM; Blood flow; FLUID-STRUCTURE INTERACTION; FINITE-ELEMENT COMPUTATION; DERIVATIVE-FREE OPTIMIZATION; STAGNATION POINT FLOW; PLATELET DEPOSITION; CONSTRAINED OPTIMIZATION; ISOGEOMETRIC ANALYSIS; BLOOD-FLOW; FORMULATION; ALGORITHMS;
D O I
10.1007/s00466-013-0931-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A continuum-based model of particle residence time for moving-domain fluid mechanics and fluid-structure interaction (FSI) computations is proposed, analyzed, and applied to the simulation of an adult pulsatile ventricular assist device (PVAD). Residence time is a quantity of clinical interest for blood pumps because it correlates with thrombotic risk. The proposed technique may be easily implemented in any flow or FSI solver. In the context of PVADs the results of the model may be used to assess how efficiently the pump moves the blood through its interior. Three scalar measures of particle residence time are also proposed. These scalar quantities may be used in the PVAD design with the goal of reducing thrombotic risk.
引用
收藏
页码:911 / 919
页数:9
相关论文
共 64 条
[1]   FLUID-MECHANICS OF THE STAGNATION POINT FLOW CHAMBER AND ITS PLATELET DEPOSITION [J].
AFFELD, K ;
REININGER, AJ ;
GADISCHKE, J ;
GRUNERT, K ;
SCHMIDT, S ;
THIELE, F .
ARTIFICIAL ORGANS, 1995, 19 (07) :597-602
[2]   Isogeometric fluid-structure interaction: theory, algorithms, and computations [J].
Bazilevs, Y. ;
Calo, V. M. ;
Hughes, T. J. R. ;
Zhang, Y. .
COMPUTATIONAL MECHANICS, 2008, 43 (01) :3-37
[3]   YZβ discontinuity capturing for advection-dominated processes with application to arterial drug delivery [J].
Bazilevs, Y. ;
Calo, V. M. ;
Tezduyar, T. E. ;
Hughes, T. J. R. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2007, 54 (6-8) :593-608
[4]   Isogeometric fluid-structure interaction analysis with applications to arterial blood flow [J].
Bazilevs, Y. ;
Calo, V. M. ;
Zhang, Y. ;
Hughes, T. J. R. .
COMPUTATIONAL MECHANICS, 2006, 38 (4-5) :310-322
[5]   Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines [J].
Bazilevs, Y. ;
Hsu, M-C. ;
Scott, M. A. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 249 :28-41
[6]   3D simulation of wind turbine rotors at full scale. Part II: Fluid-structure interaction modeling with composite blades [J].
Bazilevs, Y. ;
Hsu, M. -C. ;
Kiendl, J. ;
Wuechner, R. ;
Bletzinger, K. -U. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (1-3) :236-253
[7]  
Bazilevs Y., 2013, Computational Fluid-Structure Interaction: Methods and Applications, DOI [10.1002/9781118483565, DOI 10.1002/9781118483565]
[8]   ALE-VMS AND ST-VMS METHODS FOR COMPUTER MODELING OF WIND-TURBINE ROTOR AERODYNAMICS AND FLUID-STRUCTURE INTERACTION [J].
Bazilevs, Yuri ;
Hsu, Ming-Chen ;
Takizawa, Kenji ;
Tezduyar, Tayfun E. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22
[9]   A large deformation, rotation-free, isogeometric shell [J].
Benson, D. J. ;
Bazilevs, Y. ;
Hsu, M-C ;
Hughes, T. J. R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2011, 200 (13-16) :1367-1378
[10]   A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM [J].
Benson, D. J. ;
Bazilevs, Y. ;
De Luycker, E. ;
Hsu, M. -C. ;
Scott, M. ;
Hughes, T. J. R. ;
Belytschko, T. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 83 (06) :765-785